Lecture outline

« FASTA Algorithm
 Statistical Significance of Sequence
Comparison Results

— Probability of matching runs
— Karin-Altschul statistics

— Extreme value distribution



FASTA

* Derived from logic of the dot plot

— compute best diagonals from all frames of
alignment

* Word method looks for exact matches
between words 1n query and test sequence
— construct word position tables
— DNA words are usually 6 bases
— protein words are 1 or 2 amino acids

— only searches for diagonals in region of word
matches = faster searching



Steps of FASTA

1. Find k-tups 1n the two sequences (k=1-2
for proteins, 4-6 for DNA sequences)

2. Create a table of positions for those k-tups




The offset table

position 1 2 3 4 5 6 7 8 9 10 11
proteinA n ¢ s p t a

proteinB . . . . . ac s prk
position in offset

amino acid protein A protein B pos A - posB
a 6 0
C 7 -5
k - 11

n 1 -

P 4 9 -5
r - 10

S 8 -5
t —

Note the common offset for the 3 amino acids c¢,s and p
A possible alignment is thus quickly found -
protein 1 n c s p t a

o

protein 2 a ¢ s p r k



FASTA

3. Select top 10 scoring “local diagonals”
with matches and mismatches but no gaps.

4. Rescan top 10 diagonals (representing
alignments), score with PAM250 (proteins)
or DNA scoring matrix. Trim off the ends
of the regions to achieve highest scores.
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FASTA

5. After finding the best initial region,
FASTA performs a DP global alignment
centered on the best 1itial region.




FASTA Alignments

{e) (d)

Sequence B — — Sequence B —~
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Join segments Using gaps, LIse dynamic programming to

elirninate other segments create an optimnal alignment



History of sequence searching

1970: NW
1981: SW
1985: FASTA
1990: BLAST
1997: BLAST?2




The purpose of sequence alignment

 Homology

 Function identification

— about 70% of the genes of M. jannaschii were
assigned a function using sequence similarity

(1997)
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Similarity

 How much similar do the sequences have to be
to infer homology?

* Two possibilities when similarity 1s detected:

— The similarity 1s by chance

— They evolved from a common ancestor — hence,
have similar functions
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Measures of similarity

* Percent 1dentity:

— 40% similar, 70% similar

— problems with percent identity?
e Scoring matrices

— matching of some amino acids may be more
significant than matching of other amino acids

— PAM matrix in 1970, BLOSUM 1n 1992

— problems?
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Statistical Significance

e Goal: to provide a universal measure for inferring
homology

— How different 1s the result from a random match, or a
match between unrelated requences?

— (G1ven a set of sequences not related to the query (or a set
of random sequences), what 1s the probability of finding a
match with the same alignment score by chance?

e Different statistical measures
— p-value
— E-value
— Z-SCOT1c
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Statistical significance measures

* p-value: the probability that at least one sequence will
produce the same score by chance

* E-value: expected number of sequences that will
produce same or better score by chance

e z-score: measures how much standard deviations
above the mean of the score distribution
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How to compute statistical significance?

* Significance of a match-run
— Erdos-Renyi

» Significance of local alignments without gaps
— Karlin-Altschul statistics

— Scoring matrices revisited
« Significance of local alignments with gaps

* Significance of global alignments
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Analysis of coin tosses

Let black circles indicate heads

Let p be the probability of a “head”

— For a “fair” coin, p = 0.5

Probability of 5 heads in a row 1s (1/2)"5=0.031

The expected number of times that SH occurs in
above 14 coin tosses 1s 10*0.031 = 0.31
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Analysis of coin tosses

e The expected number of a length / run of heads 1n »
tosses.

E(])=np'

* What 1s the expected length R of the longest match
in n tosses?

l=np"— R= log,,,(n)
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Analysis of coin tosses

* (Erdos-Renyi) If there are n throws, then the
expected length R of the longest run of
heads 1s

R= 10gl/p (I”l)
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Example

« Example: Suppose n = 20 for a “fair” coin
R=log,(20)=4.32

— In other words: 1n 20 coin tosses we expect a run of heads of
length 4.32, once.

* Trick 1s how to model DNA (or amino acid)
sequence alignments as coin tosses.
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Analysis of an alignment
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* Probability of an individual match p = 0.05

* Expected number of matches: 10x8x0.05 =4

* Expected number of two successive matches
=10x8x0.05x0.05=0.2
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Matching runs
in sequence alignments

Consider two sequences a, ,, and b, ,

If the probability of occurrence for every
symbol 1s p, then a match of a residue g,
with b;1s p, and a match of length / from
a;b, to ;11150511 18 P.

The head-run problem of coin tosses
corresponds to the longest run of matches
along the diagonals
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Matching runs
in sequence alignments

There are m-/+1 X n-[+1 places where the match
could start

E(]) = mnp'

The expected length of the longest match can be
approximated as

R=log,, (mn)

where m and n are the lengths of the two sequences.
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Matching runs
in sequence alignments

* So suppose m =n = 10 and we’re looking at
DNA sequences

R=log,(100)=3.32

* This analysis makes assumptions about the
base composition (uniform) and no gaps,
but 1t’s a good estimate.
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Statistics for matching runs

e Statistics of matching runs:
E(]) = mnp'

* Length versus score?

— Consider all mismatches receive a negative score of -oo and
a;b; match receives a positive score ot s, ;.

* What 1s the expected number of matching runs with a
score x or higher?

E(S >=x) c mnp”

— Using this theory of matching runs, Karlin and Altschul
developed a theory for statistics of local alignments without
gaps (extended this theory to allow for mismatches).
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Statistics of local alignments
without gaps

* A scoring matrix which satisfy the following
constraint:

— The expected score of a single match obtained by a scoring
matrix should be negative.

E(s; ;)= Zi,j pip;si; <0

— Otherwise?

 Arbitrarily long random sequences will get higher scores just because
they are long, not because there’s a significant match.

e [If this requirement is met then the expected number of
alignments with score x or higher 1s given by:

E(S > x) = Kmne ™
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Statistics of local alignments
without gaps

E(S > x) = Kmne ™

— K <1 1s a proportionality constant that corrects the mn “space
factor” for the fact that there are not really mn independent
places that could have produced score S > x.

— K has little effect on the statistical significance of a similarity
score

— M 1s closely related to the scoring matrix used and it takes into
account that the scoring matrices do not contain actual
probabilities of co-occurence, but instead a scaled version of
those values. To understand how A 1s computed, we have to
look at the construction of scoring matrices.
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Scoring Matrices

* In 1970s there were few protein sequences available.
Dayhoff used a limited set of families of protein

sequences multiply aligned to infer mutation
likelihoods.

PGNPFATPLEILPEWYLYPVFOQILRVLPNKLLGIACQGAIPLGLMMVPFIE
PANPFATPLEILPEWYFYPVFQLLRTVPNKLLGVLAMAAVPVGLLTVPFIE
PANPMSTPAHIVPEWYFLPVYAILRSIPNKLGGVAAIGLVFVSLLALPFIN
PANPLVTPPHIKPEWYFLFAYAILRSIPNKLGGVLALLFSILMLLLVPFLH
PANPLSTPAHIKPEWYFLFAYALILRSIPNKLGGVLALLLSILVLIFIPMLO
PANPLSTPPHIKPEWYFLFAYALLRSIPNKLGGVLALLLSILILIFIPMLO
IANPMNTPTHIKPEWYFLFAYSILRAIPNKLGGVIGLVMSILIL. .YIMIF
ESDPMMSPVHIVPEWYFLFAYAILRAIPNKVLGVVSLFASILVL. . VWFVL
IVDTLKTSDKILPEWFFLYLFGFLKATPDKFMGLFLMVILLFSL. .FLFIL
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Scoring Matrices

PGNPFATPLEILPEWYLYPVFOQILRVLPNKLLGIACQGAIPLGLMMVPFIE
PANPFATPLEILPEWYFYPVFQLLRTVPNKLLGVLAMAAVPVGLLTVPFIE
PANPMSTPAHIVPEWYFLPVYALLRSIPNKLGGVAAIGLVFVSLLALPFIN
PANPLVTPPHIKPEWYFLFAYALLRSIPNKLGGVLALLFSILMLLLVPFLH
PANPLSTPAHIKPEWYFLFAYAILRSIPNKLGGVLALLLSILVLIFIPMLQ
PANPLSTPPHIKPEWYFLFAYAILRSIPNKLGGVLALLLSILILIFIPMLQO
TANPMNTPTHIKPEWYFLFAYSILRAIPNKLGGVIGLVMSILIL. .YIMIF
ESDPMMSPVHIVPEWYFLFAYALLRAIPNKVLGVVSLFASILVL. . VWFVL
IVDTLKTSDKILPEWFFLYLFGFLKAIPDKFMGLFLMVILLESL. .FLFIL

* Dayhoff represented the similarity of amino acids as a
log odds ratio:

S = log(qij /pipj)

where g, 1s the observed frequency of co-occurrence, and p;, p;
are the individual frequencies.
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Example

* If M occurs 1n the sequences with 0.01
frequency and L occurs with 0.1 frequency. By
random pairing, you expect 0.001 amino acid
pairs to be M-L. If the observed frequency of
M-L 1s actually 0.003, score of matching M-L
will be

— log,(3)=1.585 bits or log.(3) = In(3) = 1.1 nats

 Since, scoring matrices are usually provided as
integer matrices, these values are scaled by a constant
factor. A 1s approximately the inverse of the original

scaling factor.
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How to compute A

 Recall that:
As; =log(g, / p;p;)

_ Asjj
= q; = p;Pe
and: Z Z q; =1 Sum of observed frequencies is 1.
i=1 j=1
0 N Given the frequencies of
= Z Z p.p;e V= individual amino acids and

i=1 j=1 the scores 1n the matrix, A
can be estimated.
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Extreme value distribution

* Consider an experiment that obtains the
maximum value of locally aligning a random
string with query string (without gaps). Repeat
with another random string and so on. Plot the
distribution of these maximum values.

e The resulting distribution 1s an extreme value
distribution, called a Gumbel distribution.
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Normal vs. Extreme Value Distribution

0.4

Normal

Extreme
Value
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Normal distribution:
y = (1121m)ex?

Extreme value distribution:

y = eXx- eX
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Local alighments with gaps

gap opening penalty = 12

* The EVD distribution 1000 F AT N
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BLAST statistics

Pre-computed A and K values for different
scoring matrices and gap penalties are used for
faster computation.

Raw score 1s converted to bit score:

_AS-InK
bit 1n2
E-value 1s computed using
_S,.
E=sss-2 "

sss=(m—L)Y(n—N-L)

m 1S query size, n 1s database size and L 1s the
typical length of maximal scoring alignment.
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FASTA Statistics

FASTA tries to estimate the probability
distribution of alignments for every query.

For any query sequence, a large collection of
scores 1s gathered during the search of the
database.

They estimate the parameters of the EVD
distribution based on the histogram of scores.

Advantages:

— reliable statistics for different parameters

o different databases, different gap penalties, different
scoring matrices, queries with different amino acid
compositions.
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Statistical significance
another example

Suppose, we have a huge graph with weighted
edges and we want to find strongly connected
clusters of nodes.

Suppose, an algorithm for this task 1s given.

The algorithms gives you the best hundred
clusters 1n this graph.

How do you define best?
Cluster size?
Total weight of edges?

36



Statistical significance

e How different 1s a found cluster of size N from
a random cluster of the same size?

e This measure will enable comparison of
clusters of different sizes.
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Statistical significance of a cluster

* Use maximum spanning tree weight of a
cluster as a quantitative representation of that

cluster.

* And see what
values random
clusters get.
(sample many
random

clusters)
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Statistical significance of a cluster

500000
Cluster Size = 20 , :
450000 Looks like an exponential
400000 decay. We may fit an
— exponential distribution on this
5 .
\ histogram.
300000 \
250000 —Ax
\ y=Ae
200000
150000 \
100000 \
50000 \\\\
0 T T [ .
0 5 10 15 20 25 30 35 40 45
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Fitting an exponential

40



Statistical significance of a cluster

500000 500000
Cluster Size =5 Cluster Size = 10
450000 450000
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After we fit an exponential distribution, we compute the probability that
another random cluster gets a higher score than the score of found cluster.

P(x>w)=e ™"



Examples

* As = 1.7 for clusters of size 5 and A,, = 0.36 for
clusters of size 20.

* Suppose you have found a cluster of size 5
with weights of 1ts edges sum up to 15 and you
have found a cluster of size 20 with weight 45
which one would you prefer?

P(x>15)=e"" =8.42x107"

P(x>45)=e ™" =9.21x10"°
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