Suffix Trees and
Suffix Arrays

Some problems

Given a pattern P = P[1..m], find all
occurrences of P in atext S = S[1..n]

Another problem:

— Given two strings S4[1..n,] and S,[1..n,] find their
longest common substring.
« find i, j, k such that S,[i .. i+k-1] = S,[j .. j+k-1] and k is
as large as possible.

* Any solutions? How do you solve these
problems (efficiently)?

Exact string matching

* Finding the pattern P[1..m] in S[1..n] can be
solved simply with a scan of the string S in
O(m+n) time. However, when S is very long
and we want to perform many queries, it
would be desirable to have a search
algorithm that could take O(m) time.

* To do that we have to preprocess S. The
preprocessing step is especially useful In
scenarios where the text is relatively constant
over time (e.g., a genome), and when search
Is needed for many different patterns.

Applications in Bioinformatics

* Multiple genome alignment
— Michael Hohl et al. 2002
— Longest common substring problem
— Common substrings of more than two strings
» Selection of signature oligonucleotides for
microarrays
— Kaderali and Schliep, 2002

* |dentification of sequence repeats
— Kurtz and Schleiermacher, 1999

Suffix trees

Any string of length m can be degenerated
Into m suffixes.
— abcdefgh (length: 8)
— 8 suffixes:
 h, gh, fgh, efgh, defgh, cdefgh, bcefgh, abcdefgh

 The suffixes can be stored in a suffix-tree and
this tree can be generated in O(n) time

A string pattern of length m can be searched

In this suffix tree in O(m) time.

— Whereas, a regular sequential search would take
O(n) time.

History of suffix trees

Weiner, 1973: suffix trees introduced, linear-
time construction algorithm

McCreight, 1976: reduced space-complexity

Ukkonen, 1995: new algorithm, easier to
describe

In this course, we will only cover a naive
(quadratic-time) construction.

Definition of a suffix tree

» Let S=S][1..n] be a string of length n over a
fixed alphabet X. A suffix tree for S is a tree
with n leaves (representing n suffixes) and

the following properties:
— Every internal node other than the root has at least 2
children
— Every edge is labeled with a nonempty substring of S.
— The edges leaving a given node have labels starting with
different letters.

— The concatenation of the labels of the path from the root
to leaf i spells out the i-th suffix S[i..n] of S. We denote

S[i..n] by S.

An example suffix tree

* The suffix tree for string: 123456
Xabxac

bxac

®
Does a suffix tree

always exist?

What about the tree for xabxa?
* The suffix tree for string: 1234 5

Xxabxa
bxa
® 1
4
xXa
9 bxa 0
5 xa an a are not leaf
nodes.
bxa

Problem

* Note that if a suffix is a prefix of another suffix
we cannot have a tree with the properties
defined in the previous slides.

—e.g. xabxa

The fourth suffix xa or the fifth suffix a won't be
represented by a leaf node.

Solution: the terminal character $

* Note that if a suffix is a prefix of another suffix
we cannot have a tree with the properties
defined in the previous slides.

—e.g. xabxa

The fourth suffix xa or the fifth suffix a won't be
represented by a leaf node.

» Solution: insert a special terminal character at
the end such as $. Therefore xa$ will not be a
prefix of the suffix xabxa.

The suffix tree for xabxa$

b

A

Suffix tree construction

o Start with a root and a leaf numbered 1, connected
by an edge labeled S$.

« Enter suffixes S[2..n]$; S[3...n]%; ... ; S[n]$ into the
tree as follows:

« Toinsert K. = SJi..n]$, follow the path from the root
matching characters of K. until the first mismatch at
character K[j] (which is bound to happen)

(a) If the matching cannot continue from a node, denote
that node by w

(b) Otherwise the mismatch occurs at the middle of an
edge, which has to be split

Suffix tree construction - 2

If the mismatch occurs at the middle of an
edge e = S[u ... V]
— let the label of that edge be a....a,

— If the mismatch occurred at character a,, then
create a new node w, and replace e by two edges
S[u ... utk-1] and S[u+k ... v] labeled by a,...a, .4
ak+1...al

Finally, in both cases (a) and (b), create a

new leaf numbered /, and connect w to it by
an edge labeled with KJj ... |K{]

Example construction

» Let’s construct a suffix tree for xabxac$

xabxac$

o Start with:

 After inserting the second and third suffix:
xabxac$

Example contd...

* Inserting the fourth suffix xac$ will cause the
first edge to be split:

« Same thing happens for the second edge
when ac$ is inserted.

Example contd...

 After inserting the remaining suffixes the tree
will be completed:

Complexity of the naive construction

We need O(n-i+1) time for the " suffix.
Therefore the total running time is:

ZH:O(i) = 0(n’)

What about space complexity?

— Can also take O(n?) because we may need to
store every suffix in the tree separately,

— e.g., abcdefghijklmn

Storing the edge labels efficiently

 Note that, we do not store the actual
substrings S/ ... j] of S in the edges, but only
their start and end indices (J,).

* Nevertheless we keep thinking of the edge
labels as substrings of S.

* This will reduce the space complexity to O(n)

Suffix tree applet

o http://pauillac.inria.fr/~quercia/documents-
info/Luminy-
98/albert/JAVA+html/SuffixTreeGrow.html

Using suffix trees for pattern matching

Given S and P. How do we find all occurrences of Pin S?

Observation. Each occurrence has to be a prefix of some
suffix. Each such prefix corresponds to a path starting at the
root.

1. Of course, as a first step, we construct the suffix tree for S. Using
the naive method this takes quadratic time, but /inear-time algorithms
(e.g., Ukkonen’s algorithm) exist.

2. Try to match P on a path, starting from the root. Three cases:

(a) The pattern does not match — P does not occurin T

(b) The match ends in a node u of the tree. Set x = u.

(c) The match ends inside an edge (v,w) of the tree. Set x = w.

3. All leaves below x represent occurrences of P.

lllustration

T =xabxac
— suffixes ={xabxac, abxac, bxac, xac, ac, c}

« Pattern P,: xa
« Pattern P,: xb

Running Time Analysis

« Search time:

— O(m+k) where Kk is the number of occurrences of
Pin T and mis the length of P

— O(m) to find match point if it exists
— O(k) to find all leaves below match point

Scalability

* For very large problems a linear time and
space bound is not good enough. This lead to
the development of structures such as Suffix

Arrays to conserve memory .

Two implementation issues

* Alphabet size
» Generalizing to multiple strings

Effects of alphabet size on
suffix trees

We have generally been assuming that the
trees are built in such a way that

— from any node, we can find an edge in constant
time for any specific character in X
 an array of size |X| at each node

* This takes ®(m|X]|) space.

More compact representation

 We may try to be more compact taking only O(m)
space.

— At each node, have pointers to only the edges that are
needed

 This slows down the search time

« How much?

— typically the minimum of O(log m) or O(log |Z|) with a
binary tree representation.

 This effects both suffix tree construction time and
later searching time against the suffix tree.

Generalized suffix trees

Build a suffix tree for a set of strings S = {S,, ..., S,}
* Some issues

* Nodes in tree may corresponds to substrings of
potentially multiple strings S,

— compact edge labels: need 3 fields (start position, stop
position, string)

— leaf labels now a set of pairs indicating starting position
and string

Longest common substring problem

« Build a generalized suffix tree for S,$,S,9..
Here $, and $, are different new symbols not
occurring in S,;and S,.

* Mark every internal node of the tree with {1},
{2}, or {1,2} depending on whether its path
label is a substring of S, and/or S..

* Find the internal node which is labeled by
{1,2} and has the largest “string depth”.

« Example: (with the applet)
— pessimist%mississippi$

Selecting probes for microarrays

» Wikipedia: Oligonucleotides are short
sequences of nucleotides (RNA or DNA),
typically with twenty or fewer base pairs.

Given a set of genomic sequences, the problem is to identify at least one
signature oligonucleotide (probe) for each sequence. These probes must
hybridize to only the desired sequence. The algorithm produces a GST
from the reverse compliment of all the genomic sequences (candidate
probe sequences). Using the GST, the algorithm identifies all common
substrings and rejects these regions because probes designed in them
would not be specific to a single genomic sequence. Criteria such as

probe length are used to further prune this tree.

 http://www.zaik.uni-
koeln.de/bioinformatik/arraydesign.html.en

Suffix arrays

« Suffix arrays were introduced by Manber and
Myers in 1993

* More space efficient than suffix trees

« A suffix array for a string x of length m is an
array of size m that specifies the lexicographic
ordering of the suffixes of x.

Suffix arrays

Example of a suffix array for acaaacatat$

0 | aaacatat$ (3
1 | aacatat$ 4
2 | acaaacatat$ |1
3 | acatat$ 5
4 | atat$ 7
5 | at$ 9
6 | caaacatat$ |2
7 | catat$ 6
8 | tat$ 8
9 | t$ 10
109 11

Suffix array construction

Naive in place construction
— Similar to insertion sort

— Insert all the suffixes into the array one by one
making sure that the new inserted suffix is in its
correct place

— Running time complexity:
« O(m?) where m is the length of the string

Manber and Myers give a O(m log m)
construction in their 1993 paper.

Suffix arrays

 O(n) space where n is the size of the database
string
« Space efficient. However, there’s an increase in
guery time
 Lookup query
— Binary search
— O(m log n) time; m is the size of the query

— Can reduce time to O(m + log n) using a more
efficient implementation

Searching for a pattern in Suffix
Arrays

find (Pattern P in SuffixArray A):

i=0

lo = 0, hi = length(A)

for 0<=i<length(P):
Binary search for x,y
where P[i]=S[A[j]+1] for lo<=x<=]j<y<=hi
lo = x, hi =y

return {A[lo] ,A[lo+l1l],...,A[hi-1]}

Search example

Search is in mississippi$

_ 0 11 |i$
Examine the pattern letter —
by letter, reducing the range 1 8 |ippid
of occurrence each time. 2 5 issippi$
3 2 |ississippi$
occurs in indices from 0 to 3 :
5 10 |pi$
So, pattern should be 6 9 |ppi$
between these indices. ——
7 7 |sippi
Second letter s: 8 4 | sissippi$
occurs in indices from 2 to 3 .
9 6 |ssippi$
Done. 10 3 | ssissippi
Output: issippi$ and ississippi$ 11 12 |$

Suffix Arrays

* It can be built very fast.

* |t can answer queries very fast:
— How many times ATG appears?

« Disadvantages:
— Can’t do approximate matching

— Hard to insert new stuff (need to rebuild the array)
dynamically.

Useful links

http://pauillac.inria.fr/~quercia/documents-info/Luminy-
98/albert/JAVA+html/SuffixTreeGrow.html

http://home.in.tum.de/~maass/suffix.html
http://homepage.usask.ca/~ctl271/857/suffix_tree.shtml

http://homepage.usask.ca/~ctl271/810/approximate _matchin
g.shtml

http://www.cs.mcgill.ca/~cs251/0OldCourses/1997 /topic7/
http://dogma.net/markn/articles/suffixt/suffixt.nhtm

http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Tree/Suffi
X/

