Patterns, Profiles, and
Multiple Alignments




Outline

Profiles, Position Specific Scoring Matrices
Profile Hidden Markov Models

Alignment of Profiles

Multlple Alignment Algorithms

Problem definition
* Can we use Dynamic Programming to solve MSA?
* Progressive Alignment
* ClustalW

« Scoring Multiple Alignments

Entropy
Sum of Pairs (SP) Score

Sequence Pattern Discovery



Multiple Sequences

Up to this point we have considered pairwise
relationships between sequences

Protein families contain multiple sequences

- E.g. Globins
« Conserved, important regions

A common task is to find out whether a new
sequence can be included in a protein family
or not.

- We can then assign a function and predict 3D
structure



‘Profile Representation of Multiple Sequences
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Profile Representation of Multiple Sequences

- A G G C T A T C A C C T G
T A G - €C T A C C A - - - G
c A - Cc T A CCA - - - G
c A GG - C T AT CATC - G G
c A GG - C T ATCGTC - G G

A 1 1 8

C .6 1 4 1 6 .2

G 1 .2 .2 4 1

T .2 1 6 2

- .2 8 .4 .8 .4

Earlier, we were aligning a sequence against a sequence

Can we align a sequence against a profile in order to find out
whether this sequence belongs to that protein family?



PSSM

Position Specific Scoring Matrices

* The profile representation of a protein family can
be a considered as the coefficients of a scoring
matrix which give amino acid preferences for each
alignment position separately

How to obtain PSSMs?

« From a given multiple alignment of sequences

- Database searches (where a set of database
proteins are aligned to the query (i.e. reference)
sequence)



How to obtain PSSMs?

Suppose we have a multiple alignment of N
sequences. To obtain the values of the

PSSM matrix (m, ,), we can use the technique
we have used to align a sequence to a profile
and use the frequencies of amino acids at
each column as coefficients:

n
ﬂtb — ;Cfb mu,a — qu,bsa,b

residue
typesb




A better way to weigh residue preferences

It is better to give preferred residues extra
weight, because residue types rarely found
are probably highly disfavored at that column

Use logarithmic weighting:

. ln(l o f;z’,b) / nu,b

m = Ky —
re;mln(l/(]\f +1) Jus N +1

typesb



Using log-odds ratios

We can also use a technique similar to the
construction of the common scoring matrices

9u.q
Pa

m, , = log

If sufficient data is available:

qu,a — u,a



If sufficient data is not available

q,. Will cause problems

Amino acids that do not occur in a column will
cause a score of -«

A simple solution: assume at least one
occurrence of each residue type

-n,, +1
N +20

These additional counts are called pseudocounts.

qu,a



A better formula

Incorporate background amino acid
composition

nu,a +IBpa
N+ [

Qua =

S is the total number of pseudocounts in a
column. Can be adjusted based on the
amount of data available.



\Viewing Profiles/PSSMs as logos

» Residue contribution at each position:
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The DNA-binding helix-turn-helix motif of the CAP family
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Profile HiIdden Markov Models

Using HMMs to represent a profile and to
align a sequence to a profile



Hidden Markov Model

Hidden Markov models are it %3
probabilistic finite state

machines. A hidden Markov o a1 @ e
model A is determined by the b1 - "
following parameters:

y1 y2 y3
— A set of finite number of states: S, 1 <i<N
— The probability of starting in state S, «;
— The transition probability from state §;t0 S, a;,
— The emission probability density of a symbol o
in state S,




What is hidden?

With a hidden Markov model, we usually
model a temporal process whose output we
can observe but do not know the actual
underlying mathematical or physical model.

* We try to model this process statistically.

Here the states of the hidden Markov model
are hidden to us. We assume that there is
some underlying model (or some logic) that
produces a set of output signals.



Problems associated with HMMs

There are three typical questions one can ask
regarding HMMs:

« Given the parameters of the model, compute the probability of a
particular output sequence. This problem is solved by the
forward-backward procedure.

« Given the parameters of the model, find the most likely sequence
of hidden states that could have generated a given output
sequence. This problem is solved by the Viterbi algorithm.

« Given an output sequence or a set of such sequences, find the
most likely set of state transition and output probabilities. In other
words, train the parameters of the HMM given a dataset of output
sequences. This problem is solved by the Baum-Welch algorithm.



Example (from Wikipedia)

You have a friend to whom you talk daily on the phone. Your friend
is only interested in three activities: walking in the park, shopping,
and cleaning his apartment. The choice of what to do is determined
exclusively by the weather on a given day. You have no definite
information about the weather where your friend lives, but you know
general trends. Based on what he tells you he did each day, you try
to guess what the weather must have been like.

There are two states, "Rainy" and "Sunny", but you cannot observe
them directly, that is, they are hidden from you. On each day, there
is a certain chance that your friend will perform one of the following
activities, depending on the weather: "walk", "shop", or "clean".
Since your friend tells you about his activities, those are the
observations.



Example (from Wikipedia)

* You know the general weather trends in the area, and
what your friend likes to do on the average. In other
words, the parameters of the HMM are known.

walk: 0.6
shop: 0.3
clean: 0.1

0.6

0.4




Example (from Wikipedia)

Now, you talked to your friend for three days, and he told
you that on the first day walked, the next day he
shopped and the last day he cleaned.

What is the most likely sequence of days that could have
produced this outcome? (Solved by the Viterbi algorithm)

What is the overall probability of the observations?

(Solved by forward-backward algorithm)
walk: 0.1 B




HMMs to represent a family of sequences

Given a multiple alignment of sequences, we
can use an HMM to model the sequences.
Each column of the alignment may be
represented by a hidden state that produced
that column. Insertions and deletions can be
represented by other states.
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Profile HMMs from alignments

A given multiple sequence alignment may be
used to get the following HMM.

ACA---ATG
TCAACTATC
ACAC--AGC
AGA---ATC
ACCG=-=-ATC
'y
Am2
4
Gmz2
Ta:z
Tr B
g__.g 1.0 g_a 1.0 g.z_a g_w:l 1.0 g 1.0 g_a
G et T e G g ™ Cmz
T2 T T T T —-—F T




Profile HMMs
The structure of the profile HMM is given by:

<> - Insert state

[] - Match state
(O - Delete state

““»| END

BEGIN

From: http://www.ifm.liu.se/bioinfo/assignments/hmm-simple.png

There are match, insert, and delete states. Given a
multiple sequence alignment we can easily determine
the HMM parameters (no Baum-Welch needed in this
case)



Profile HMMS

The structure is of profile HMMs is usually
fixed following some biological observations:




Variants for non-global alignments

» Local alignments (flanking model)

« Emission prob. in flanking states use background
values p,.

* Looping prob. close to 1, e.g. (1- ) for some small 7.




Variants for non-global alignments

Overlap alignments
* Only transitions to the first model state are allowed.

« When expecting to find either present as a whole or
absent

 Transition to first delete state allows missing first
residue




\Variants for non-global alignments

- Repeat alignments

 Transition from right flanking state back to random
model

« Can find multiple matching segments in query string




Determining the states of the HMM

The structure is usually fixed and only the
number of “match” states is to be determined

An alignment column with no gaps can be
considered as a “match” state.

An alignment column with a majority of gaps
can be considered an “insert” state.

Usually a threshold on the gap proportion is
determined to find the “match” states



Determining the transition probabilities

The transition probabilities “from” a state
always add up to 1 (except the “end” state
which do not have any transitions from it).

Zt(u,v) =1



Determining the transition probabilities

Count all the transitions on the given multiple
alignment from an alignment position (or
state) and use them in the following equation
to find transition probabilities from a state

t(u,v) =

Zm



Determining the emission probabillities

Emission probabilities in a match or insert
state also adds up to 1.

n,, ’
€u, (@) = Znu : €y (a) =
M, b
b

Using pseudocounts

e[u (a):pa



Pseudocounts in HMMs

If we do not observe a certain amino acid at a
column of an MSA the emission probability is O
for that amino acid.

 This strategy will give O probability to such
sequences. However, we do not want to do that,
(i.e., we do not want to miss sequences that may be
biologically important because of only one mismatch)

« Solution: Add hypothetical occurrences of those
amino acids into the columns. E.g, assume a
background distribution for each column. The actual
appearances of amino acids at a column update the
background distribution.
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Example (with pseudocounts)
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Scoring a sequence against a profile HMM

Given a profile HMM, any given path through
the model will emit a sequence with an
associated probability

The path probability is the product of all
transition and emission probabilities along the

path.



Scoring a sequence against a profile HMM

Given a query sequence using algorithms
similar to DP for sequence alignment we can
compute the most probable path that will emit
that query sequence (Viterbi algorithm)

The probability that the given query sequence
is emitted by that HMM is given by the sum of
all probabilities over all possible paths
(forward/backward algorithms).



Viterbi algorithm

It is @ dynamic programming algorithm. It is
based on the following assumptions:

« At any time the process we are modeling is in some
state

* We have finite number of states
« Each state produces a single output

« Computing the most likely hidden sequence up to a
certain point t must depend only on the observed event
at point t, and the most likely sequence at point { — 1.

These assumptions are satisfied by a first order
HMM.



Viterbi DP recurrence relations

VMM_I (xi—l )t(Mu—l > Mu )
Vu, (x;) = ey (X, ) Max; Vi (x ), M,)
L VDM_I ('xi—l )t(Du—l > Mu )

Vu, (x_ )t (M,,1,)

) = d
V]u (xz) pxi m X{ Vlu (xi_l)t(]u’lu)

(VMu_l (x ){(M
Vp (x )t (D

u—1?2

u—l’Du)

vp (X;) = max- D)




Viterbi algorithm

Using these equations we can fill in a partial
scores table v of size

length,,., X Nnumber of states in HMM

Initialization:
- setv, (7)=1,v,(") =0 for all states u

However, multiplying many probabilities will
lead to very small numbers for long
sequences. Therefore use log of probabilities
iInstead and convert products to summation



Viterbi DP recurrence relations

M)
logv, (x;)=loge, (x,)+maxy logv, (x_)+logt(,_,M,)
M)

u—1°

logv,, (x_)+logt(M

u—1°

logv, (x_,)+logt(D

logv,, (x;,)+logt(M,,1,)

] =1 +
ogv,, (x;) =log p, maX{ logv, (x,.)+logt({,,1,)

logv,, (x)+logt(M,,,D,)

logv, (x;)=max; D)

u—1?2

\ logv, (x;)+logt(D



Forward algorithm

Forward and backward algorithms are used
to compute the probability of the sequence
being emitted from an HMM by summing up
the probabilities over all possible paths.

Modification on Viterbi DP equations:
* |Instead of using max, sum all options




Forward algorithm

fMu (xi) =€y (xi )[fMu_l (xi—l )t(Mu—l ) Mu) T
T f1u_1 (e, ., M)+
+ /o, (i ))0(D, 1, M,)]

f]u (x;) = Py [fM (xi—l)t(Muslu)+ﬂu (x e, 1,)]

I, (%) = f, (M, D)+ fp, (x)UD,,D,)]



Searching a database

Given the hidden Markov model for a protein
family. We can evaluate all the sequences in
a database in terms of “"how likely” they could
have been produced by this HMM model.
This likelihood score can be used to find new
protein sequences as candidate members for
that protein family.

We can use the Viterbi algorithm or the
forward/backward algorithms to compute the
probability.



Finding the HMM for a protein family

Given a set of sequences, can we find the
parameters of an HMM without performing a
multiple sequence alignment first?

* Yes. We can use the Baum-Welch algorithm

However, we have to decide first
* How many match states are there?



Baum-Welch Algorithm

The Baum-Welch algorithm is an expectation-
maximization (EM) algorithm. It can compute
maximum likelihood estimates and posterior
mode estimates for the parameters (transition
and emission probabilities) of an HMM, when
given only emissions as training data.



Available profile HMM tools

- SAM
- HMMER?Z2
» and many others




Multiple alignment algorithms

One of the most essential tools in molecular
biology

* Finding highly conserved subregions or embedded
patterns of a set of biological sequences

Conserved regions usually are key functional regions, prime
targets for drug developments

« Estimation of evolutionary distance between sequences
* Prediction of protein secondary/tertiary structure

* Practically useful methods only since 1987 (D.
Sankoff)
« Before 1987 they were constructed by hand
« Dynamic programming is expensive



Multiple Sequence Alignment (MSA)

What is multiple sequence alignment?
Given k sequences:

VI ISCTGSSSNIGAGNHVKWYQQLPG
VI ISCTGTSSNIGSITVNWYQQLPG
LRLSCSSSGEFIFSSYAMYWVROAPG
LSLTCTVSGTSEDDYYSTWVRQPPG
PEVTCVVVDVSHEDPQVKENWYVDG
ATLVCLISDEFYPGAVTVAWKADS
AALGCLVKDYFPEPVTVSWNSG
VSLTCLVKGEFYPSDIAVEWESNG



Multiple Sequence Alignment (MSA)

An MSA of these sequences:

VIISCTGSSSNIGAG-NHVKWYQOQLPG
VIISCTGTSSNIGS-—ITVNWYQQLPG
LRLSCSSSGEFIEFSS—=YAMYWVRQAPG
LSLTCTVSGTSEDD--YYSTWVROQPPG
PEVTCVVVDVSHEDPQVKENWYVDG—-
ATLVCLISDFYPGA--VITVAWKADS—-
AALGCLVKDYFPEP--VTVSWNSG——-
VSLTCLVKGEFYPSD--IAVEWESNG—-—



Multiple Sequence Alignment (MSA)

An MSA of these sequences:

VIISOTGSSSNIGAG-NHVKWYQOLPG
VI ISOTGTSSNIGS-—-ITVNWYQQLPG
LRLIGSSSGEIEFSS—=YAMYWVRQAPG
LSLTIATVSGTSEDD--YYSTIWVROPPG
PEVTIQVVVDVSHEDPQVKENWYVDG—--
ATLVOLISDFYPGA--VTVAWKADS—-
AALGQLVKDYFPEP--VTVIWNSG——-
VSLTOQLVKGEYPSD--IAVEWESNG——

Conserved residues



Multiple Sequence Alignment (MSA)

An MSA of these sequences:

VIISCTGSSSNIGAG-NHVKWYQOLPG
VIISCTGTSSNIGS-—-ITVNWYQOLPG
LRLSCSSSGEFIFSS--YAMYWVROAPG
LSLTCTVSGTSEDD--YYSTWVRQOPPG
PEVTCVVVDVSHEDPQVKENWYVDG—-
ATLVCLISDFYPGA--VITVAWKADS—-
AALGCLVKDYFPEP--VTVSWNSG——-
VSLTCLVKGEFYPSD--IAVEWESNG—-—

Conserved regions



Multiple Sequence Alignment (MSA)

An MSA of these sequences:

ISCTGSSSNIGAG-NHVKWYQOLPG
ISCTGTSSNIGS-—-ITVNWYQOQLPG
RUSCSSSGEFIFSS——YAMYWVRQAPG
TCTVSGTSEDD-=-YYSTWVRQPPG
TCVVVDVSHEDPOQVKENWYVDG—-
VCLISDEFYPGA--VTVAWKADS—-
ALIGCLVKDYFPEP--VTVSWNSG———
TCLVKGEFYPSD--IAVEWESNG—-

Patterns? Positions 1 and 3 are hydrophobic
residues



\Multiple Sequence Alignment (MSA)

* An MSA of these sequences:

ISATGSSSNIGAG-NHVKWYQOLPG
ISATGTSSNIGS——-ITVNWYQOLPG
SOSGEFIFSS——YAMYWV
TVSGTSEDD--YYSTIWVROPPG
VVVDVSHEDPQVKENWYVDG—-
LISDEYPGA--VTVAWKADS—-
LVKDYFPEP--VTVIWNNSG——-
LVKGEFYPSD--IAVEWESNG—-—

>

Conserved residues, regions, patterns




MSA Warnings

MSA algorithms work under the assumption
that they are aligning related sequences

They will align ANYTHING they are given,
even if unrelated

If it just “looks wrong” it probably is



Generalizing the Notion of Pairwise Alignment

Alignment of 2 sequences is represented as a
2-row matrix

In a similar way, we represent alignment of 3
sequences as a 3-row matrix

-

G

> > >
— |

> 0o
N - 0

C
C

> > |

Score: more conserved columns, better alignment



\Alignments = Paths in &
dimensional grids
» Align 3 sequences: ATGC, AATC,ATGC

A -- T G C

A A T -- C

A T G C




Alignment Paths

oj 1 f1]12]3]4 x coordinate
A - T G C
A A T C




Alignment Paths

X coordinate

y coordinate

>=1>|=

Oj+|OoO|}+




\Alignment Paths

o L I R A x coordinate
A - T G C

o1 ] 2] 3|3 ]| 4 y coordinate
A A T - C

cfojJ 11213 ]4 Z coordinate
A T G C

- Resulting path in (x,y,z) space:
(0,0,0)—>(1,1,0)—(1,2,1) —(2,3,2) —>(3,3,3) >(4,4,4)




‘Aligning Three Sequences

source
- Same strategy as

aligning two sequences
» Use a 3-D matrix, with

each axis representing a

sequence to align

* For global alignments,

go from source to sink

sink




2-D vs 3-D Alignment Grid

2-D alignment matrix

3-D alignment matrix




\Z-D cell versus 3-C

|
7

/!

N

 Alignment Cell

In 2-D, 3 edges
In each unit
square

In 3-D, 7 edges
In each unit cube




Architecture of 3-D Alignment Cell

(i-1j-1k-1)

(ij-1,k-1)




Multiple Alignment: Dynamic Programming

cube diagonal:

Siilj-1k-1 i 5(vi’ W u") no indels

S. . + 0 V., W, N
S;jx = Max < e 5;{ ! ;}j |
i-1j.k-1 . face diagonal:
Siitk1 T o(, Wi, ) ) one indel
Sitjk T o, _, )
Sk to(,w, ) | edge diagonal:
S TO(L L uy) ) two indels

AX, y, Z) Is an entry in the 3-D scoring matrix



Multiple Alignment: Running Time

For 3 sequences of length n, the run time is
/n3;, O(nd)

For k sequences, build a k-dimensional
matrix, with run time (2k-1)(n*); O(2knk)

Conclusion: dynamic programming approach
for alignment between two sequences is
easily extended to k sequences but it is
impractical due to exponential running time



‘Multiple Alignment Induces Pairwise
Alignments

Every multiple alignment induces pairwise alignments

x: AC-GCGG-C
y: AC-GC-GAG
z: GCCGC-GAG

Induces:

X: ACGCGG-C; =x: AC-GCGG-C; y: AC-GCGAG
y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG




‘Reverse Problem: Constructing Multiple
Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments:

X: ACGCTGG-C; x: AC-GCTGG-C; y: AC-GC-GAG
y: ACGC--GAC; z: GCCGCA-GAG; z: GCCGCAGAG

can we construct a multiple alignment that induces
them?




‘Reverse Problem: Constructing Multiple
Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments:

X: ACGCTGG-C; x: AC-GCTGG-C; y: AC-GC-GAG
y: ACGC--GAC; z: GCCGCA-GAG; z: GCCGCAGAG

can we construct a multiple alignment that induces
them?

NOT ALWAYS

Pairwise alignments may be inconsistent




Inferring Multiple Alignment from
Pairwise Alignments

From an optimal multiple alignment, we can
infer pairwise alignments between all pairs of
sequences, but they are not necessarily
optimal

It is difficult to infer a "good” multiple
alignment from optimal pairwise alignments
between all sequences



Combining Optimal Pairwise Alignments into Multiple
Alignment

[ARARTTTT

ARARATTTT-——
e TP R APAD———-GEE0E

AAPAATTTT=—=
ARRAA——-GGGGE

Can combine pairwise === -
alignments into
multiple alignment [FrETesce —————— [Aaancsce.

= TTTTGEEGE

(n} Compatible pairaeise abigrmm et
ARARATTTT

Can not combine

pairwise alignments

mfto multiple e
alignment

b} Incoenpatible pairwise allgrments

AARAATTTT——-— ——— A MATTTT
= TTTTGGEGE ? GEGGEAPM AN ———
-




Consensus String of a Multiple Alignment

- A G G C T A T C A G

T A G - C T A C C A - - -G

cC A G - CT A CCA - - -G

CcC A G - C T A T CAC - G G

CcC A G - C T AT CGTC - G G

c A G - C T A T CATC - G G
Consensus

String: C A G C T A T C A C G G

The consensus string S,, derived from multiple alignment
M is the concatenation of the consensus characters for
each column of M.

* The consensus character for column i is the character that
minimizes the summed distance to it from all the characters in
column /. (i.e., if match and mismatch scores are equal for all
symbols, the majority symbol is the consensus character)



‘Profile Representation of Multiple Alignment
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Profile Representation of Multiple Alighment

- A G G C T A T C A C C T G
T A G - €C T A C C A - - - G
c A - Cc T A CCA - - - G
c A GG - C T AT CATC - G G
c A GG - C T ATCGTC - G G

A 1 1 8

C .6 1 4 1 6 .2

G 1 .2 .2 4 1

T .2 1 6 2

- .2 8 .4 .8 .4

Earlier, we were aligning a sequence against a sequence
Can we align a sequence against a profile?

Can we align a profile against a profile?



Aligning alignments

Given two alignments, can we align them?

X GGGCACTGCAT

y GGTTACGTC-- Alignment 1
z GGGAACTGCAG
w GGACGTACC-- Alignment 2

v GGACCT-----



Aligning alignments

Given two alignments, can we align them?
Hint: use alignment of corresponding profiles

GGGCACTGCAT
GGTTACGTC-- Combined Alignment
GGGAACTGCAG
GGACGTACC--
GGACCT-----

4 5 N K ¥



Multiple Alignment: Greedy Approach

Choose most similar pair of strings and combine into a
profile , thereby reducing alignment of k sequences to an
alignment of of k-1 sequences/profiles. Repeat

This is a heuristic greedy method

\
u,= ACGTACGTACGT... — u,=ACg/tTACg/tTACg/cT...
u, = TTAATTAATTAA... / U, = TTAATIAATTIAA.

k { u;=ACTACTACTACT...

‘

u, = CCGGCCGGCCAGA...)/

L = CCGGCCGGCCAGG



Greedy Approach: Example

Consider these 4 sequences

sl GATTCA
sZ2 GTCTGA
s3 GATATT
s4 GTCAGC



Greedy Approach: Example (contd)

* There are @ = 6 possible alignments

sZ2
s4

s
sZ2

s
s3

GTCTGA
GTCAGC (score = 2)

GAT-TCA
G-TCTGA (score = 1)

GAT-TCA

GATAT-T (score 1D

s
s4

sZ2
s3

s3
s4

GATTCA--
G—T-CAGC(score

G-TCTGA
GATAT-T (score

GAT-ATT
G-TCAGC (score

0)

-1)

-1)



Greedy Approach: Example (contd)

S, and s, are closest; combine:

sZ2 GTCTGA

s4 GTCAGC | 22,4 GTCE/aGa/cA

(profile)

new set of 3 sequences:

s, GATTCA
S3 GATATT
S, 4 GTCi/aG



Progressive Alignment

Progressive alignment is a variation of greedy
algorithm with a somewhat more intelligent
strategy for choosing the order of alignments.

Progressive alignment works well for close
sequences, but deteriorates for distant
sequences

Gaps in consensus string are permanent
Use profiles to compare sequences



Star alignment

Heuristic method for multiple sequence
alignments

Select a sequence c¢ as the center of the star

For each sequence Xy, ..., X, such that index / =
¢, perform a Needleman-Wunsch global
alignment

Aggregate alignments with the principle “once a
gap, always a gap.”



Choosing a center

Try them all and pick the one which is most similar
to all of the sequences

Let S(x;,%) be the optimal score between
sequences x; and X;.

Calculate all O(k?) alignments, and choose as x,
the sequence x;, that maximizes the following

Ei S(X;,X;)



‘ Star alignment example

MPE MSKE
- S;: MPE
S 1T s S,: MKE
M-KE .
\ / >3+ MSKE
S, SKE
S;
SKE
| M-PE
M-PE
MKE MPE M-KE
S MEE RS T MeKkE
4 MSKE

S—KE




Analysis

Assuming all sequences have length n
O(k?n?) to calculate center

Step i of iterative pairwise alignment takes
O((i-n)-n) time

* two strings of length nand i-n

O(k?n?) overall cost



ClustalW

Most popular multiple alignment tool today

‘W’ stands for ‘weighted’ (different parts of
alignment are weighted differently).
Three-step process

1.) Construct pairwise alignments

2.) Build Guide Tree (by Neighbor Joining method)
3.) Progressive Alignment guided by the tree

- The sequences are aligned progressively
according to the branching order in the guide tree



Step 1: Pairwise Alignment

Aligns each sequence again each other
giving a similarity matrix

Similarity = exact matches / sequence length
(percent identity)

Vl V2 V3 V4
\4 —
v,| .17 -
vy| .87 .28 - . |
v,| .59 .33 .62 - (.17 means 17 % identical)




Step 2: Guide Tree

Create Guide Tree using the similarity matrix
ClustalW uses the neighbor-joining method

Guide tree roughly reflects evolutionary
relations



Step 2: Guide Tree (contd)

Vi
Vi V2 V3 Vg Vs
- v,
.17 - v,
.87 .28 -
.59 .33 .62 -
Calculate:
V7 3 = alignment (v;, v3)
Vi 3 4 = alignment ((v; 3, Vv,)

V1’2’3’4 = a-l-ignment ((V1,3,4), Vz)



Step 3: Progressive Alignment

Start by aligning the two most similar
sequences

Following the guide tree, add in the next
sequences, aligning to the existing alignment

Insert gaps as necessary

FOS RAT
FOS_MOUSE
FOS_CHICK
FOSB_MOUSE
FOSB_HUMAN

PEEMSVTS-LDLTGGLPEATTPESEEAFTLPLLNDPEPK-PSLEPVKNISNMELKAEPED
PEEMSVAS-LDLTGGLPEASTPESEEAFTLPLLNDPEPK-PSLEPVKSISNVELKAEPED

SEELAAATALDLG----APSPAAAEEAFALPLMTEAPPAVPPKEPSG--SGLELKAEPEFD
PGPGPLAEVRDLPG————-- STSAKEDGFGWLLPPPPPPP--—----—————————— LPFQ
PGPGPLAEVRDLPG——-—-- SAPAKEDGFSWLLPPPPPPP---—---——-———————— LPFO

el .. FLF * . * **

Dots and stars show how well-conserved a column is.



'ClustalW: another example

S, ALSK
S, TNSD
S, NASK

S, NTSD




ClustalW example

S; ALSK
S, TNSD
S; NASK
S, NTSD
All pairwise
alignments
S1 SZ S3 S4
s, | © 9 4 7
S, 0 8 3
S, 0 7
S, 0

Distance Matrix



ClustalW example

S; ALSK
S, TNSD
S; NASK
S, NTSD
All pairwise
alignments
S1 SZ S3 S4
s, | © 9 4 7
S, 0 8 3
S, 0 7
S, 0

Distance Matrix

Neighbor
Joining

Rooted Tree




ClustalW example

S, ALSK Multiple Alignment Steps
S, TNSD

3 2. Align S, with S,
S, NTSD 3. Align (S, S3) with (S;, Sy)

All pairwise
alignments

Sy
S S S S
L 2 > - Neighbor >3
Sy | O | 9 | 4 | 7 Joining
S, 0 8 3 >
S, 0 / b
S, 0 Rooted Tree

Distance Matrix



ClustalW example Multiple Alignment Steps

—ALSK : .
S, ALSK ~-ALSK NA-SK 1. Align S; with S,
S, TNSD | -TNSD [(J
S; NASK | NA-SK ET:E 2. Align S, with S,
S, NTSD NT-SD

3. Align (S,, S;) with (S,, S,)

All pairwise Multiple
alignments Alignment
S
S S S S
- - > - Neighbor >3
S1 0 0 4 ! Joining
s, o | 8 | 3 Sz
S, 0 | 7 >
S, 0 Rooted Tree

Distance Matrix



‘Other progressive approaches

- PILEUP
« Similar to CLUSTALW
+ Uses UPGMA to produce tree




Problems with progressive
alignments

Depend on pairwise alignments

If sequences are very distantly related,
much higher likelinood of errors

Care must be made in choosing scoring
matrices and penalties



Figure 1. Limits of the progressive strategy.

—
GARFIELD THE LAST FA-T CAT

GARFIELD THE FAST CA-T ---
GARFIELD THE VERY FAST CAT
======== THE ---- FA-T CAT

\

GARFIELD THE LAST FA-T CAT
GARFIELD THE FAST CA-T ---
GARFIELD THE VERY FAST CAT

-y

GARFIELD THE LAST FAT CAT
GARFIELD THE FAST CAT ---

THE FAT CAT [GERFIELD THE VERY FAST CAT ] [mmgm THE FAST CAT ] [ GARFTELD THE LAST FAT CAT ]‘

This exarrple shows how a progressive alignment strategy can be rrisled. In the initial alignrrent of sequences 1 and 2, ClustalVW Fes a
choice between aligning CAT with CAT and rraking an internal gap or making a rmisrratch between C and F and having a terrrinal gap.
Since terrrinal gaps are rmuch cheaper than internals, the ClustalVV scoring scherres prefers the forrrer. In the next stage, when the
extra sequence is added, it tums out that properly aligning the two CATs in the previous stage would have led to a better scori ng sums-
cf-pairs multiple alignrrent.




lterative refinement In
progressive alignment

Another problem of progressive alignment:

Initial alignments are “frozen” even when new
evidence comes

Example:
X:
Y:

Z .
w.

GAAGTT
GAC-TT

GAACTG
GTACTG

> Frozen!

> Now clear that correcty = GA-CTT



Evaluating multiple alignments
Balibase benchmark (Thompson, 1999)

De-facto standard for assessing the quality of a
multiple alignment tool

Manually refined multiple sequence alignments

Quality measured by how good it matches the
core blocks

Another benchmark: SABmark benchmark

- Based on protein structural families



Scoring multiple alignments

|deally, a scoring scheme should
» Penalize variations in conserved positions higher
- Relate sequences by a phylogenetic tree
Tree alignment
Usually assume
* Independence of columns

 Quality computation

Entropy-based scoring
«  Compute the Shannon entropy of each column

Sum-of-pairs (SP) score



Multiple Alignments: Scoring

Number of matches (multiple longest
common subsequence score)

Entropy score

Sum of pairs (SP-Score)



Multiple LCS Score

« Acolumnis a “match’ if all the letters in the
column are the same

AAA
AAA
AAT
ATC

* Only good for very similar sequences



Entropy

Define frequencies for the occurrence of each
letter in each column of multiple alignment

Pa =1, Pr=Ps=pPc=0 (15t column)
ps = 0.75, pr = 0.25, pg=p:=0 (2" column)
p, = 0.50, p; = 0.25, p=0.25 p;=0 (3 column)

Compute entropy of each column AAA

AAA
- ), pxlog py AAT

X=4,T ,G,C ATC



\Entropy: Example

/A\
A
entropy| - '=0 Best case
A
\4)
(A\
T | 11 1
¢ =N Llog— = —4(—%-2)=2
Worst case “" | g Z4 g, = 42
\C)




Multiple Alignment: Entropy Score

Entropy for a multiple alignment is the
sum of entropies of its columns:

2 over all columns 02 X=A,T,G,C p)(logp)(



Entropy of an Alignment: Example

column entropy:
-(psogp,+ pdogp-+ pdogps;+ plogpy

*Column 1 = -[1*log(1) + 0*log0 + 0*log0 +0*1og0]
=0

*Column 2 = -[('/,)*log(1/,) + (}/,)*log(?/,) + 0*log0 + 0*log0]

= [ ()*(-2) + (31)*(-415) ] = +0.811
*Column 3 = -[("/,)*log("/,)+("/;) *log("/,)+("/,) *log('/y) +('/5)*log('/,)]

= 4 [()*(-D)] = +2.0

> > > P
OO 0>
=1 OO >

*Alignment Entropy =0 + 0.811 + 2.0 = +2.811




‘Multiple Alignment Induces Pairwise
Alignments

Every multiple alignment induces pairwise alignments

x: AC-GCGG-C
y: AC-GC-GAG
z: GCCGC-GAG

Induces:

X: ACGCGG-C; =x: AC-GCGG-C; y: AC-GCGAG
y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG




Sum of Pairs (SP) Scoring

SP scoring is the standard method for scoring
multiple sequence alignments.

Columns are scored by a ‘sum of pairs’
function using a substitution matrix (PAM or
BLOSUM)

Assumes statistical independence for the
columns, does not use a phylogenetic tree.



Sum of Pairs Score(SP-Score)

Consider pairwise alignment of sequences
a; and a;
imposed by a multiple alignment of k sequences

Denote the score of this suboptimal (not

necessarily optimal) pairwise alignment as
s*(a;, a)

Sum up the pairwise scores for a multiple

alignment:

S(a17 . 7ak) = Zi,j S*(aii aj)



Computing SP-Score

Aligning 4 sequences: 6 pairwise alignments

Given aq,a,,a;,a,;

s(a,...a,) = Zs%(a,a) = s*(a,a) + s*(a,a3)
+ s*(a,,a,) + s*(ay,as3)
+ s*(ay,a,) + s*(as,a,)



SP-Score: Example

a; ATG-C-AAT
. A-G-CATAT
a, ATCCCATTT

S(a1°'°ak) = Z S (ai ) aj) D [Zj Pairs of Sequences
L]

May also calculate the scores column by column:
A G

A Score=3 —ui El Score = 1 -2u
A A C G

1 —H

Column 1 Column 3



Example

Compute Sum of Pairs Score of the following
multiple alignment with match = 3,
mismatch = -1, S(X,-) = -1, S(-,-) =0

: GTACG
. TGCCG
: CGGCC
: CGGAC
-2 6-2 6 2
Sum of pairs = -2+6-2+6+2 = 10

S N K X



Multiple alignment tools

Clustal W (Thompson, 1994)
* Most popular

PRRP (Gotoh, 1993)

AMMT (Eddy, 1995)

DIALIGN (Morgenstern, 1998)
T-Coffee (Notredame, 2000)
MUSCLE (Edgar, 2004)
Align-m (Walle, 2004)
PROBCONS (Do, 2004)




Table 1. Some recent and less recent available methods for MSAs.

Name Algorithm URL

MSA Exact http:/Avwibcwustl edwibc/msa. hitml

DCA Exact (requires MSA) http://bibiserv.techfak uni-biefield. de/dca

OMA lterative DCA http:/hibiserv.techfak. uni-biefield. de/oma
Clustalw, ClustalX Progressive ftp:/ftp-igbrnc. u-strashg fr/pub/dustalVy or clustalx
MultAlin Progressive http:/Avwwaw toulouse inra. fr/multalin.htm
DiAlign Consistency-based http:/Anw.gst. de/biodv/dialign. it

CornAlign Consistency-based http:/Awww.daimi.au.df/~ ocaprani

T-Coffee Consistency-based/progressive http:/figs-server.cnrs-mirs.fr/~ cnotred

Praline lterative/progressive jhering@nirnr.mrc.ac. uk

terAlign lterative http:/giotto.Stanford.edw/~ lucianodteralign. hirr
Prrp lterative/Stochastic ftp:/ftp.genome.ad jp/pub/genorne/saitama-c/
SAM lterative/Stochastic/HVIM rph@cse. ucsc.edu

HWVIMER lterative/Stochastic/HIVIM http://hrornerwustl.edw

SAGA lterative/Stochastic/GA http://igs-server.cnrs-rmrs.fr/~ cnotred

GA lterative/Stochastic/GA czhang@watnow. uwaterloo.ca

from: C. Notredame, “Recent progresses in multiple alignment: a survey”,
Pharmacogenomics (2002) 3(1)



Useful links

http://cnx.org/content/m11036/latest/
http://www.biokemi.uu.se/Utbildning/Exercises/ClustalX/index.shtm
http://bioinformatics.weizmann.ac.il/~pietro/Making_and_using_protein_ MA/
http://homepage.usask.ca/~ctl271/857/paper1_overview.shtml

http://journal-ci.csse.monash.edu.au/ci/vol04/mulali/mulali.html



Sequence Pattern Discovery

High conservation only for short stretches of
sequence.

- Statistical significance may not be high due to
short length - harder to identify these regions

« May be important for structure and function and
can be used to identify diverged members of
protein families.



Sequence Pattern Discovery

From multiple sequence alignments

By searching for possible patterns in the set
of sequences



Pattern Discovery from MSA

eMOTIF

« Uses 20 groups of amino acids to denote amino
acids that can be substituted by each other

« For each column of the alignment determine
which single group can cover the whole column
If cannot find a single group for all sequences, look for a
single group for at least %30 of the sequences.
* By examining the possible column combinations,
identify patterns

Compute statistical significance by comparing to a
background distribution



Pattern Discovery from MSA

AACC

* Amino Acid Class Covering
« Uses an alternative set of groupings

« Similar to progressive MSA techniques

Use the groupings to represent the intermediate
alignments. If they cannot be grouped use the symbol X
to denote the column is not conserved.

The final alignment shows the sequence patterns
common to all sequences - can only find fully
conserved patterns



Pattern Search in Unaligned Sequences
Gibbs

« Uses a probabilistic model to search for a pattern of
length 7 in a set of N sequences.

« Uses a model similar to PSSM construction
In addition the start of the pattern in each sequence is
included in the model
- Starts with a random pattern and iteratively refines the
random patterns into an emergent pattern (about 100N
iterations)

The starting positions are random first, the most likely starting
positions are found at each step and the profile model is also
modified accordingly

Another techniqgue MEME is similar and uses the EM method.



