
Microarrays

• Technology behind microarrays
• Data analysis approaches
• Clustering microarray data• Clustering microarray data
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Gene expression

• Cells are different because of differential gene 
expressionexpression. 

• About 40% of human genes are expressed at any 
one timeone time.

• Gene is expressed by transcribing DNA into 
single stranded mRNAsingle-stranded mRNA

• mRNA is later translated into a protein
Mi h l l f RNA• Microarrays measure the level of mRNA 
expression
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Basic idea

• mRNA expression represents dynamic aspects of• mRNA expression represents dynamic aspects of 
cell 

• mRNA expression can be measured with latest• mRNA expression can be measured with latest 
technology

• mRNA is isolated and labeled using a fluorescent• mRNA is isolated and labeled using a fluorescent 
material

• mRNA is hybridized to the target; level of• mRNA is hybridized to the target; level of 
hybridization corresponds to light emission which 
is measured with a laseris measured with a laser

• Higher concentration            more hybridization              
more mRNA
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A demonstration

• DNA microarray animation by A. Malcolm 
Campbell.

http://www.bio.davidson.edu/Courses/genomics/chip/chip.html
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Experimental conditionsp
• Different tissues
• Different developmental stages
• Different disease states• Different disease states
• Different treatments
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Background papers
• Background paper 1
• Background paper 2
• Background paper 3• Background paper 3
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Microarray types

The main types of gene expression microarrays:
• Short oligonucleotide arrays (Affymetrix)
• cDNA or spotted arrays (Brown lab)• cDNA or spotted arrays (Brown lab)
• Long oligonucleotide arrays (Agilent Inkjet)
• Fiber-optic arrays
• ...
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Affymetrix chipsAffymetrix chips
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Competitive hybridization
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Microarray image dataMicroarray image data

mouse heart versus liver hybridization
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More imagesMore images
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Characteristics of microarray data

• Extremely high dimensionality
Experiment = (gene gene gene )– Experiment = (gene1, gene2, …, geneN)

– Gene = (experiment1, experiment2, …, experimentM)
– N is often on the order of 104

– M is often on the order of 101

• Noisy data
– Normalization and thresholding are important

• Missing data
F i i h f il d– For some experiments a given gene may have failed to 
hybridize
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Microarray dataMicroarray data

GENE_NAME alpha 0 alpha 7 alpha 14 alpha 21 alpha 28 alpha 35 alpha 42
YBR166C 0.33 -0.17 0.04 -0.07 -0.09 -0.12 -0.03
YOR357C -0.64 -0.38 -0.32 -0.29 -0.22 -0.01 -0.32
YLR292C -0.23 0.19 -0.36 0.14 -0.4 0.16 -0.09
YGL112C -0.69 -0.89 -0.74 -0.56 -0.64 -0.18 -0.42
YIL118W 0.04 0.01 -0.81 -0.3 0.49 0.08
YDL120W 0 11 0 32 0 03 0 32 0 03 0 12 0 01YDL120W 0.11 0.32 0.03 0.32 0.03 -0.12 0.01

Missing Value!
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Data mining challenges

• Too few experiments (samples), usually < 100 
• Too many columns (genes), usually > 1,000
• Too many columns lead to false positivesy p
• For exploration, a large set of all relevant genes is 

desireddesired
• For diagnostics or identification of therapeutic 

targets the smallest set of genes is neededtargets, the smallest set of genes is needed
• Model needs to be explainable to biologists 
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Data processingg
• Gridding

– Identifying spot locations
• Segmentation• Segmentation

– Identifying foreground and background
• Removal of outliers
• Absolute measurementsAbsolute measurements

– cDNA microarray
I i l l f d d h l• Intensity level of red and green channels
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Data normalizationData normalization

• Normalize data to correct for variances
– Dye bias
– Location bias
– Intensity bias
– Pin bias
– Slide bias

• Control vs non control spots• Control vs. non-control spots
– Maintenance genes
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Data normalization

Calibrated, red and green equally detectedUncalibrated, red light under detected
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Data analysisData analysis

• What kinds of questions do we want to ask?
– Clustering 

• What genes have similar function?
• Can we subdivide experiments or genes into meaningful 

l ?classes?

– Classification 
• Can we correctly classify an unknown experiment or gene into• Can we correctly classify an unknown experiment or gene into 

a known class?
• Can we make better treatment decisions for a cancer patient 

based on gene expression profile?
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Clustering goals

• Find natural classes in the data
• Identify new classes / gene correlations
• Refine existing taxonomies• Refine existing taxonomies
• Support biological analysis / discovery
• Different Methods

Hierarchical clustering SOM's k means etc– Hierarchical clustering, SOM's, k-means, etc
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Clustering techniquesg q
• Distance measures

√ 2– Euclidean: √ Σ (xi – yi)2

– Vector angle: cosine of angle = x.y / √ (x.x) √ (y.y)
P l i– Pearson correlation

• Subtract mean values and then compute vector angle
• (x-xx).(y- yy) / √ ((x- xx).(x- xx)) √ ((y- yy).(y- yy))(x xx).(y yy) / √ ((x xx).(x xx)) √ ((y yy).(y yy))
• Pearson correlation treats the vectors as if they were the same 

(unit) length, therefore it is insensitive to the amplitude of 
changes that may be seen in the expression profileschanges that may be seen in the expression profiles. 
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K-means clusteringg

• Randomly assign k points to k clusters
• Iterate 

Assign each point to its nearest cluster (use– Assign each point to its nearest cluster (use 
centroid of clusters to compute distance)
Aft ll i t i d t l t– After all points are assigned to clusters, 
compute new centroids of the clusters and re-

i ll th i t t th l t f th l tassign all the points to the cluster of the closest 
centroid.

23



K-means demo

• K-means applet
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Hierarchical clusteringg

• Techniques similar to construction of• Techniques similar to construction of 
phylogenetic trees.

• A distance matrix for all genes are 
constructed based on distances between 
their expression profiles. 
N i hb j i i UPGMA b• Neighbor-joining or UPGMA can be 
applied on this matrix to get a hierarchical 
cluster.

• Single-linkage complete-linkage average-
25

Single linkage, complete linkage, average
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Hierarchical clustering
• Hierarchical clustering treats each data point as a 

singleton cluster, and then successively mergessingleton cluster, and then successively merges 
clusters until all points have been merged into a 
single remaining cluster. A hierarchical clusteringsingle remaining cluster. A hierarchical clustering 
is often represented as a dendrogram.

A hierarchical clustering
f t f tl dof most frequently used

English words.
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Hierarchical clusteringg
• In complete-link (or complete linkage) 

hi hi l l i i hhierarchical clustering, we merge in each 
step the two clusters whose merger has the 
smallest diameter (or: the two clusters with 
the smallest maximum pairwise distance).the smallest maximum pairwise distance). 

• In single-link (or single linkage) 
hi hi l l t i i hhierarchical clustering, we merge in each 
step the two clusters whose two closest 
members have the smallest distance (or: the 
two clusters with the smallest minimum

27pairwise distance). 



Inter-group distancesInter-group distances

single-linkage complete-linkage
28

single-linkage complete-linkage



Average linkageAverage-linkage

• UPGMA and neighbor-joining considers all 
cluster members when updating the distance p g
matrix
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Hierarchical Clusteringg
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Hierarchical ClusteringHierarchical Clustering
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Self organizing maps (SOM)g g p ( )
• Self Organizing Maps (SOM) by Teuvo Kohonen is a data 

visualization technique which helps to understand highvisualization technique which helps to understand high 
dimensional data by reducing the dimensions of data to a 
map.p

• The problem that data visualization attempts to solve is that 
humans simply cannot visualize high dimensional data as is, p y g
so techniques are created to help us understand this high 
dimensional data.

• The way SOMs go about reducing dimensions is by 
producing a map of usually 1 or 2 dimensions 

hi h l h i il i i f h d b iwhich plot the similarities of the data by grouping 
similar data items together.
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Components of SOMs: sample dataComponents of SOMs: sample data
• The sample data that we need to cluster (or• The sample data that we need to cluster (or 

analyze) represented by n-dimensional 
vectors

• Examples:p
– colors. The vector representation is 3-dimensional: 

(r,g,b)( ,g, )

– people. We may want to characterize 400 students in p p y
CEng. Are there different groups of students, etc. 
Example representation: 100 dimensional vector = (age, 

33
gender, height, weight, hair color, eye color, CGPA, 
etc.)



Components of SOMs: the mapComponents of SOMs: the map
• Each pixel on the map is associated with an n-• Each pixel on the map is associated with an n-

dimensional vector, and a pixel location value 
(x y) The number of pixels on the map may not be(x,y). The number of pixels on the map may not be 
equal to the number of sample data you want to 
cluster The n-dimensional vectors of the pixelscluster. The n-dimensional vectors of the pixels 
may be initialized with random values.
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Components of SOMs: the mapComponents of SOMs: the map

• The pixels and the associated vectors on the map 
are sometimes called “weight vectors” orare sometimes called “weight vectors” or 
“neurons” because SOMs are closely related to 
neural networks
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SOMs: the algorithmSOMs: the algorithm
• initialize the map• initialize the map
• for t from 0 to 1

d l l l– randomly select a sample
– get the best matching pixel to the selected sample
– update the values of the best pixel and its neighbors
– increase t a small amount

• end for
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Initializing the mapInitializing the map
• Assume you are clustering the 400 students in• Assume you are clustering the 400 students in 

CEng.
• You may initialize a map of size 500x500 (250K 

pixels) with completely random values (i.e. p ) p y (
random people). Or if you have some 
information about groups of people a priori youinformation about groups of people a priori, you 
may use this to initialize the map.
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Finding the best matching pixelFinding the best matching pixel
• After selecting a random student (or color)• After selecting a random student (or color) 

from the set that you want to cluster, you 
fi d h b hi i l hi lfind the best matching pixel to this sample.

• Euclidian distance may be used to compute y p
the distance between n-dimensional vectors.

I e you select the closest pixel using the– I.e., you select the closest pixel using the 
following equation:

b t i l i ∑
n

2• best_pixel = argmin  

f ll

∑
=

−
i

samplep xx
1

2)(

∈
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Updating the pixel valuesUpdating the pixel values

• The best matching pixel and its neighbors• The best matching pixel and its neighbors 
are allowed to update themselves to 

bl h l d lresemble the selected sample
– new vector of a pixel is computed as

current_pixel_value*(t)+sample_value*(1-t)
– in other words, in early iterations when t is close to 0, , y ,

the pixel directly copies the properties of the randomly 
selected sample, but in subsequent iterations the 
ll d f h dallowed amount of changes decreases.

– Similarly for the neighbors of the best pixel, as the 
di t f th i hb i th ll d t
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distance of the neighbor increases, they are allowed to 
update themselves in a smaller amount. 



Updating the pixel valuesUpdating the pixel values

• A Gaussian function can be used to 
determine the neighbors and the amount of 
update allowed in each iteration. The heightupdate allowed in each iteration. The height 
of the peak of the Gaussian will decrease 
and base of the peak will shrink as time (t)
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and base of the peak will shrink as time (t) 
progresses.



Why do similar objects end up in 
near-by locations on the map?

d l l d l• Because a randomly selected sample, A, 
influences the neighboring samples to become 
similar the itself at a certain level.

• At the following iterations when another sample• At the following iterations when another sample, 
B, is selected randomly and it is similar to A. We 
h h f b i i B’ b i lhave a greater chance of obtaining B’s best pixel 
on the map closer to A’s best pixel, because 
those pixels around A’s best pixel are updated to 
resemble A, if B is similar to A, its best pixel 
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How to visualize similarities 
between high-dimensional vectors?
• Colors are easy to visualize, but how do we 

visualize similarities between students?
• The SOM may show how similar a pixel is to its 

neighbors (dark color: not similar, light color:neighbors (dark color: not similar, light color: 
similar). White blobs in the map will represent 
groups of similar people. Their properties can begroups of similar people. Their properties can be 
analyzed by inspecting the vectors at those pixels.
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SOM demoSOM demo

l• SOM applet
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