
Perspective: Microarray Technology, Seeing More
Than Spots
Introduction

The publication in the mid-1990s of a new molecular tool,
the DNA microarray, has led to a revolution in the way
scientists approach the investigation of gene expression and
regulation. This technology has made its impact upon many
basic scientific disciplines including cancer biology, devel-
opmental biology, toxicology, investigation of growth-factor
and hormonal signaling, and the applied areas of disease
diagnostics and drug development. The ability to assay thou-
sands of genes simultaneously in a high-throughput manner
across RNA samples derived from various biological sources
and treatments has increased the need for integration of
higher-order statistical analyses and data management
schema into molecular biology laboratories. Many investi-
gators are struggling with interpreting large, complex data-
sets, communicating their findings, and developing strate-
gies for following up numerous potential leads indicated in
datasets. This perspective provides an overview of the tech-
nology and its impact, as well as strategies for study design,
data analysis, and avoidance of potential pitfalls.

Overview of microarray technology

In the mid-1990s, a multidisciplinary team at Stanford
University published a landmark paper initiating a new era
in the realm of gene expression studies (1). This paper de-
scribed a new technology allowing the quantitative, simul-
taneous monitoring of the expression of thousands of genes
using a new tool termed a DNA microarray. Since then,
numerous papers have been published reviewing the tech-
nology and its potential applications for scientific discovery
in a broad range of biological disciplines. While reviewing all
of the literature and findings related to this exciting tech-
nology is not within the scope of this perspective, a broad
overview of the technology will be provided with a focus on
study design and data analysis. Thus, investigators who have
not yet ventured into this new world of the DNA chip will
have a guide to develop a satisfying microarray study.

Although the DNA microarray chip is a tool most com-
monly used to monitor the level of expression of a gene at the
RNA level (1–3), it also documents DNA copy number (4–6)
and DNA protein interactions (7, 8) and sequencing appli-
cations (polymorphism detection). This perspective concen-
trates on the application of DNA microarrays for monitoring
the expression of a gene by measurement of its ability to
hybridize to a target sequence localized to a specific region
on a chip. To measure this hybridization, RNA, extracted
from a biological sample of interest, is reverse-transcribed
into cDNA that ideally represents a quantitative copy of
genes expressed at the time of sample collection. This cDNA
is labeled with a tracking molecule such as a radioactive or
a fluorescent nucleotide, or an affinity molecule like biotin.

The labeled cDNA is then hybridized to the DNA chip that
contains thousands of gene targets. Ideally, each molecule in
the labeled cDNA will only bind to its appropriate comple-
mentary target sequence on the array. Quantitative imaging
coupled with clone database information allows measure-
ment of the amount of labeled cDNA that hybridized to each
target sequence, resulting in the identification and relative
quantification of the genes expressed in the original biolog-
ical sample (3, 9, 10).

Several varieties of the DNA microarray are used fre-
quently throughout the scientific community. These include
deposition or spotted cDNA, spotted oligomer, or synthe-
sized oligomer chips. The cDNA microarray is comprised of
a collection of partial gene sequences that are spotted indi-
vidually into precise locations within the DNA chip (11).
These sequences usually range in size from 500–2000 bp and
may be chosen from different regions of the gene depending
on the goal of the project. The selection of sequences from the
3� untranslated region of the gene confers the advantage of
specificity to the genes being measured. Multiple genes
within a conserved functional family may have a high degree
of sequence similarity, especially in domains responsible for
catalytic functions. When using a microarray to monitor gene
expression, ideally the investigator must detect the precise
gene that is affected without cross-reactivity with other fam-
ily members. By selecting a sequence that contains a majority
of 3� untranslated region, a researcher can take advantage of
sequence diversity in this region that may be gene specific
and not conserved among related family members. Further-
more, in recent applications, investigators have selected pro-
moter sequences to generate custom chips to monitor bind-
ing to specific promoter regions (7, 8). While the long target
sequences of cDNA microarrays provide an advantage for
sensitivity of detection of gene expression, the potential
problems with specificity must be considered (12). If there is
significant sequence overlap between clones representative
of multiple genes (�70%), such as in related enzyme families
(i.e. kinases, cytochrome p450s, etc.), then the discrete tran-
script may not be specifically detected; rather, multiple, re-
lated sequences might be simultaneously detected (12). An
additional advantage of these cDNA chips is their ease of use
and attainability. Complete instructions on their manu-
facture within a laboratory are freely available (http://
cmgm.stanford.edu/pbrown/mguide/nospecs2.html). The
ability to manufacture chips within a research laboratory or
an institute provides the advantages of flexibility and cus-
tomization of design as necessitated by the scientific goal of
the project.

Another form of DNA microarrays is based on deposition
or on-chip synthesis of oligonucleotides for generation of
targets. Several approaches to the manufacturing of these
chips (13–15) lead to the same end result—a chip that con-
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tains short oligomers ranging from 25–80 bases as the target
sequences. While these shorter sequences can confer high
specificity, they may have decreased sensitivity/binding
compared with cDNA arrays. Users of these arrays compen-
sate for sensitivity problems by employing multiple se-
quences for each gene. One disadvantage of these oligomer-
based chips is their availability only from commercial
manufacturers. The cost of custom development of an oli-
gomer-based chip is beyond the budget of a majority of
researchers; but more affordable, premade oligomer-based
chips are available and may be sufficiently informative for
investigators seeking to employ this type of array.

Scientific impact of microarray studies

The impact of the microarray technology has proven tre-
mendous because it has enabled investigators to progress
from studying the expression of one gene in several days to
hundreds of thousands of gene expressions in a single day.
For the first time, investigators can relatively quickly mea-
sure the expression of a complete genome (16–19) across a
large number of environmental stimuli. This awe-inspiring
technological breakthrough has the potential to impact some
previously intractable scientific realms and aid in the eluci-
dation of complex models and systems. Tracking the num-
bers of publications in PubMed reveals that, since 1995, over
2000 papers have included this technology. Scientists in the
arena of cancer biology have been some of the most indus-
trious at incorporating this technology into their studies (Fig.
1). While generous funding in this arena may have contrib-
uted to greater usage of microarrays, this technology is,
nonetheless, ideally suited for the comparison of gene ex-
pression in various stages of tumor development (2, 20–24)
and monitoring expressions of premalignant and tumori-
genic cells following exposure to anticancer agents or tumor
promoters (25–32). Several laboratories (25, 33) demon-
strated that gene expression profiling of patient lymphoma

samples improved distinction of tumor classification and
provided insight on clinical outcome. These and other data
indicate that one important benefit of this technology might
be to inform clinicians of better, specific markers for cancer
diagnosis, prognosis and treatment (23–25, 31, 34).

Other basic scientific disciplines have also benefited from
global gene expression profiling. Investigations using mi-
croarrays have provided a more comprehensive view on the
complex regulation of the cell cycle (16, 35), differentiation
(36–38), and aging (39–41). Other studies involving organ-
isms associated with infectious or other noncancerous dis-
eases have elucidated alterations in gene expression that may
prove beneficial in treatment (42–44). An understanding of
the mechanism of action of pharmaceutical agents, their po-
tential adverse outcomes, and the prediction of activity of
unknown agents will undoubtedly significantly impact the
development of safer and more efficacious drugs (45, 46).

General considerations for study design and data analysis

While microrarrays allow scientists to gaze across the ge-
nome at the response of an organism to a biological stimulus,
they have an equal potential to mislead if false assumptions
are made or flaws in study design are overlooked. At present,
there is no one standard guide or consensus for the design
and conduct of an expression-profiling experiment because
the ultimate goal of the project dictates the study design.
Some considerations, however, are worth noting (Table 1).

The data from a single microarray hybridization, while
containing a plethora of valuable information, will also be
filled with many potential false positives and negatives re-
sulting from technical processing steps or part of the data
analysis process. To achieve confidence in a dataset and the
most sensitive limit of detection, replicate hybridizations—
both biological and chip—should be analyzed (47–50). In all
disciplines of the biological sciences, including gene profil-
ing, the reproducibility of an observation has been and must

FIG. 1. Increased numbers of scientific
studies employing microarray technol-
ogy. A search of Medline by the follow-
ing key words revealed a growing
number of publications referencing mi-
croarray technology. Search terms
were: DNA microarray (_), DNA mi-
croarray and cancer (f), and DNA mi-
croarray and hormone (�).
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continue to be a requisite for publication. A good study
design will strategize to incorporate biological replicates into
the chip analysis process; such inclusion is not apparent in
all microarray-related publications. The use of biological rep-
licates in the analysis schema enables detection of gene-
expression changes that may be more related to environ-
mental alterations than to the stimulus or biological
parameter being monitored. In addition, examination of as
many biological parameters as possible will enable the in-
vestigator to account for variations in experiments and ob-
tain accurate results. For example, simultaneous measure-
ments of DNA synthesis, cell cycle progress, viability, and
apoptosis might be employed as standard measures to gauge
the health and growth of cultured cells and ensure that these
parameters are consistent within replicates. For clinical sam-
ples, notations on patient history and health, tissue handling
upon necropsy or surgery, clinical chemistry, and histopa-
thology will collectively aid in the ultimate interpretation of
the gene-expression profiles by providing a phenotypic an-
chor or description of sample physiology that provides a
biological context for the sample from which the RNA was
derived (51). For example, these descriptions will provide
additional information to aid in integration and interpreta-
tion of the gene expression profile as related to proliferation,
apoptosis, necrosis, growth arrest, differentiation, or other
physiological states.

Statistical and visualization considerations

In the optimal study design, multiple chips for each bio-
logical sample should be assayed (50). This safeguard will
provide the investigator the best dataset for balancing sen-
sitivity with confidence. In the case of two-color fluorescent
cDNA microarray hybridization, a dye swap should be con-
ducted to filter out artifacts that could be attributed to un-
equal incorporation or quenching of the dye molecules.

Historically, many investigators have used an arbitrary
fold cutoff as a measure of significance of a gene expression
change. This approach poses many potential problems, in-
cluding the gross overestimation of the number of significant
gene changes in a dataset that contains a wide distribution
of alterations (e.g. two diverse cell types like normal and
cancerous tissue; Fig. 2A); or the severe underestimation of
gene expression changes when a dataset is derived from a
tightly linked comparison (Fig. 2B), as in the case of an early
time point following hormonal stimulation (51a). Numerous,
statistics-based, analytical approaches have been designed to
gain the most sensitivity in detecting gene changes while
simultaneously providing a measure of the potential error
associated with the statistical method. Statistical measure-
ments of significance can be employed at both the single- and
multiarray levels (52–57).

The output from a microarray hybridization is usually a
large data spreadsheet filled with numbers related to the
distribution of the signal and background intensities for each
gene on the chip. Most investigators convert these data to a
more visual format for interpretation. Many visualization
tools are available, both academically and commercially. One
of the first tools applied to microarray data was clustering
(58), which provides a two-dimensional hierarchical group-
ing of data points. In one dimension, assayed samples are
grouped according to their similarity; in the second dimen-
sion, genes are grouped according to the overall similarity of
their expression patterns across the samples. This type of
analysis is useful for visualizing groups of genes that are
similarly regulated across the biological samples under
study (57, 59). Higher order computational approaches are
needed to support the interpretation of data for discerning
gene signatures or informative gene subsets. Methods such
as genetic algorithms combined with supervised clustering
(23, 31, 52, 57), principle component analysis, self-organizing
maps, and linear discriminant analysis are all examples of
analytical methods that might be used for discovering trends
of expression across samples.

Contemplation of the ultimate research objective for the
study prior in the context of visualization of microarray data
will ensure that appropriate treatment groups are incorpo-
rated in the study design. For example, if an investigator
wants to follow the signaling of a receptor-ligand interaction,
inclusion of the profiling of a receptor-negative line, receptor
pathway inhibitor, or a nonactive ligand to filter out potential
effects not directly related to the activated pathway should
allow clear determination of direct receptor mediated effects
(Fig. 3). The use of a targeted treatment to help show bio-
logical specificity was demonstrated in a study (41, 60) in
which the investigators wanted to examine effects of aging.
They hypothesized that effects of metabolism and energy
consumption contributed to the aging process in mice and
used microarrays to determine age-associated gene-expres-
sion changes in these pathways. They benefited by adding a
group of caloric-restricted mice in their study design and
thus could filter their observed, age-associated gene-expres-
sion changes to determine precisely those genes that changed
with normal aging and reversed in the extended-lifespan,
calorie-restricted mice.

Gene expression changes are usually measured relative to

TABLE 1. Important considerations in the design of a microarray
experiment

Biological parameters
Sampling of appropriate number of replicates
Inclusion of other relevant samples, i.e. nonactive analogs,

inhibitors, knockouts
Measurement of accompanying biological characteristics;

physiology
Development of stringent treatment and harvest protocols

Technical parameters
Choice of chip, validation of identity of gene set
Hybridization of chip replicates, inclusion of dye swap
Choice of sample used as control in ratio analysis (universal,

matched, other)
Scanning protocol that ensures proper laser power settings for

optimal signals
Approach for validation of results

Data analysis parameters
Image analysis software, method of normalization and

background subtraction
Data processing and long-term storage and backup
Data format, standardization, flexibility for import into multiple

programs
Determination of appropriate visualization tools
Application of statistical approaches to determine gene

significance
Gene annotation and ontology linkages
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another sample. Therefore, another early consideration in the
study design process is the strategy for pairing sample hy-
bridizations, in the case of two-color cDNA arrays. (Tradi-
tionally in oligonucleotide arrays or arrays hybridized with
radioactive probes, only one sample is hybridized per chip
and sample pairing is made during the data analysis pro-
cess.) Investigators have adopted several approaches in sam-
ple pairing. As in traditional experiments, many investiga-
tors use closely matched sample controls (e.g. vehicle or time
matched). Other researchers choose to use universal control
RNA derived from multiple samples that is designed to
provide a baseline measurement on every gene being as-
sayed (61). A third approach, employed when closely
matched sample controls cannot be obtained, e.g. some clin-
ical studies, uses a pooled-normal, or tissue-representative
control (23). Each sample-pairing strategy has advantages
and disadvantages, although matching as closely as possible
the concurrent control to the sample under study may be
most desirable (50). One advantage of the universal control
is the ease of comparing all the samples assayed against it;
however, comparison to datasets that were not analyzed
against it may be difficult. In addition, the maintenance of a

reproducible, universal RNA stock for an extended period of
time is of paramount importance when employing this ap-
proach. Finally, a completely different hybridization design
minimizes control measurements and implements a loop
design that optimizes direct treatment comparisons (where
sample A is compared with B, B is compared with C, C is
compared with D, and D is compared with A).

Potential pitfalls

Heralding the advantages of expression profiling must be
fairly balanced by stating the limitations of the technology.
Obviously, this is an expression-based technology, capable
only of monitoring cellular responses at the RNA level. Some
critical signaling changes may occur only at the protein or
posttranslational level and therefore would not be detected
with gene arrays. However, at this point microarray mea-
surements of RNA provide the advantage of being able to use
one biological sample to measure thousands of defined se-
quences simultaneously. Protein analyses sometimes require
breaking one sample into multiple cellular fractions and can-
not always provide definition of the moiety being measured.

FIG. 2. Properties of data distribution
in various sample comparisons. A, Dis-
tribution of nonrelated biological sam-
ples. The distribution of gene expres-
sion changes between nonrelated
samples is wide. Use of a 99% confi-
dence interval indicates a statistical
significant cutoff at 2.51-fold. B, Distri-
bution of related biological samples.
The distribution of gene expression
changes between closely related sam-
ples is very tight. Use of a 99% confi-
dence interval indicates a statistical
significant cutoff at 1.43-fold. Image
analysis was conducted using Microar-
ray suite of IP Labs (Scanalytics, Ar-
lington, VA).
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However, as signaling maps and networks are more finely
mapped, predicting potential protein changes or activation
of signaling pathways based on upstream or downstream
RNA changes should become possible.

One challenge in interpreting gene expression profiling
data will be distinguishing between initial and secondary
effects. An initial perturbation of a biological system will
induce gene expression changes that will be followed by
more alterations related to secondary, cellular changes. The
dissection of the cause-and-effect relationship will be a chal-
lenge that will be possible by careful experimental design
incorporating a broad range of time points or disease
progression.

At the technical level, several pitfalls are easily circum-
vented by careful follow-up of microarray data. First, errors
in sequence databases sometime lead to errors in gene an-
notation; therefore, confirmation of clone identification is
essential. For cDNA microarray technology, routine rese-
quencing may be advantageous in confirming the assumed
identity of a gene of interest (62). Second, microarrays indi-
cate a quantitative assessment of the level of gene expression,
a value that for some genes may be imprecise (63). Qualita-
tive interpretation may suffice for some investigations; how-
ever, if precise quantitation is important, as for certain clin-
ical diagnostic applications, the level of gene expression
should be validated by another technology. One may wish to
employ real-time quantitative PCR for a high-throughput,
quantitative measure (64). Alternately, Northern blots or ri-
bonuclease protection assays provide the benefit of deter-
mining not only a quantitative measure, but also the number
of potential transcripts detected with the chip sequence (65).
Finally, gene-expression arrays can provide a sensitive mea-
sure of gene changes within a subpopulation of cells. We
have found that microarrays can detect gene expression in
merely 5% of the total population (66). This finding signifies

that, if a cell culture or tissue is heterogeneous, significant
gene changes may be related to only a small fraction of the
cells; and investigators may wish to confirm localization with
an in situ technique (67).

Future promise

The future for microarrays is bright, as they will undoubt-
edly continue to be used in well-funded industry for high-
throughput screening of compound targets, diagnostic
development, and drug development (45, 46). As the cost of
conducting experiments decreases, more academic investi-
gators will include this technology in their arsenal of tools
(68). Microarray analysis should not be considered as the
conclusion to an experiment, but as a discovery mechanism
to help determine which avenues to pursue. More variations
of the classic microarray paradigm, like the search for pro-
moter elements (7, 8) or screening of DNA/chromosomes for
expressed genes (4–6, 69, 70), may arise. Scientific discov-
eries documented within the ever-expanding databanks will
be facilitated by the adoption of standard data formats (71),
common databases (72–79), more detailed global network
mapping (80–86), and development of stronger interactions
of biologists with computer scientists and statisticians. We
can expect that the format of microarrays will change to
become denser, more miniaturized, and technically stan-
dardized, and the desire to assay genome-wide cellular
changes using this innovative technology will only be
enhanced.

Cynthia A. Afshari
Laboratory of Molecular Carcinogenesis
National Institute of Environmental Health Sciences
Research Triangle Park, North Carolina 27709

FIG. 3. Illustration of how experimental de-
sign and visualization work together in data
interpretation. Example of a clustering di-
agram generated from an experiment where
tissue was isolated from an animal treated
with a compound, a compound inhibitor, and
dual treatment of compound and inhibitor
together. Red signifies genes that are in-
duced, and green indicates genes that are
repressed by treatment relative to vehicle
control treated animals. The clustering
visualization indicates a group of genes that
are highly induced by the treatment (shown
in bright red) and then are attenuated by
cotreatment with the inhibitor (shown by
less intense red color), indicating that affects
on these genes are directly related to the
compound/inhibitor pathway.

Afshari • Perspective Endocrinology, June 2002, 143(6):1983–1989 1987



Acknowledgments

The author expresses her appreciation to Drs. Ed Lobenhofer, Hisham
Hamadeh, Alex Merrick, Ben Van Houten, and Robert Maronpot for
their critical reading and advice in the preparation of this article; to
Jennifer Collins, Lee Bennett, and Sherry Grissom for preparation of the
figures; and to JoAnne Johnson for detailed editing.

Received February 28, 2002. Accepted March 4, 2002.
Address all correspondence and requests for reprints to: Cynthia

Afshari, Ph.D., National Institute of Environmental Health Sciences, P.O.
Box 12233, MD2-04, 111 T. W. Alexander Drive, Research Triangle Park,
North Carolina 27709. E-mail: afshari@niehs.nih.gov.

References

1. Schena M, Shalon D, Davis RW, Brown PO 1995 Quantitative monitoring of
gene expression patterns with a complementary DNA microarray. Science
270:467–470

2. DeRisi J, Penland L, Brown PO, Bittner ML, Meltzer PS, Ray M, Chen Y, Su
YA, Trent JM 1996 Use of a cDNA microarray to analyse gene expression
patterns in human cancer. Nat Genet 14:457–460

3. Shalon D, Smith SJ, Brown PO 1996 A DNA microarray system for analyzing
complex DNA samples using two-color fluorescent probe hybridization. Ge-
nome Res 6:639–645

4. Pollack JR, Perou CM, Alizadeh AA, Eisen MB, Pergamenschikov A, Wil-
liams CF, Jeffrey SS, Botstein D, Brown PO 1999 Genome-wide analysis of
DNA copy-number changes using cDNA microarrays. Nat Genet 23:41–46

5. Stephan DA, Chen Y, Jiang Y, Malechek L, Gu JZ, Robbins CM, Bittner ML,
Morris JA, Carstea E, Meltzer PS, Adler K, Garlick R, Trent JM, Ashlock MA
2000 Positional cloning utilizing genomic DNA microarrays: the Niemann-
Pick type C gene as a model system. Mol Genet Metab 70:10–18

6. Hughes TR, Roberts CJ, Dai H, Jones AR, Meyer MR, Slade D, Burchard J,
Dow S, Ward TR, Kidd MJ, Friend SH, Marton MJ 2000 Widespread aneu-
ploidy revealed by DNA microarray expression profiling. Nat Genet 25:
333–337

7. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J,
Schreiber J, Hannett N, Kanin E, Volkert TL, Wilson CJ, Bell SP, Young RA
2000 Genome-wide location and function of DNA binding proteins. Science
290:2306–2309

8. Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA, Dynlacht BD
2002 E2F integrates cell cycle progression with DNA repair, replication, and
G(2)/M checkpoints. Genes Dev 16:245–256

9. Khan J, Saal LH, Bittner ML, Chen Y, Trent JM, Meltzer PS 1999 Expression
profiling in cancer using cDNA microarrays. Electrophoresis 20:223–229

10. Hegde P, Qi R, Abernathy K, Gay C, Dharap S, Gaspard R, Hughes JE,
Snesrud E, Lee N, Quackenbush J 2000 A concise guide to cDNA microarray
analysis. Biotechniques 29:548–550; 552–556

11. Schena M, Shalon D, Heller R, Chai A, Brown PO, Davis RW 1996 Parallel
human genome analysis: microarray-based expression monitoring of 1000
genes. Proc Natl Acad Sci USA 93:10614–10619

12. Evertsz EM, Au-Young J, Ruvolo MV, Lim AC, Reynolds MA 2001 Hybrid-
ization cross-reactivity within homologous gene families on glass cDNA mi-
croarrays. Biotechniques 31:1182–1186

13. Lipshutz RJ, Fodor SP, Gingeras TR, Lockhart DJ 1999 High density synthetic
oligonucleotide arrays. Nat Genet 21:20–24

14. Singh-Gasson S, Green RD, Yue Y, Nelson C, Blattner F, Sussman MR,
Cerrina F 1999 Maskless fabrication of light-directed oligonucleotide microar-
rays using a digital micromirror array. Nat Biotechnol 17:974–978

15. Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ, Shannon KW,
Lefkowitz SM, Ziman M, Schelter JM, Meyer MR, Kobayashi S, Davis C, Dai
H, He YD, Stephaniants SB, Cavet G, Walker WL, West A, Coffey E, Shoe-
maker DD, Stoughton R, Blanchard AP, Friend SH, Linsley PS 2001 Expres-
sion profiling using microarrays fabricated by an ink-jet oligonucleotide syn-
thesizer. Nat Biotechnol 19:342–347

16. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown
PO, Botstein D, Futcher B 1998 Comprehensive identification of cell cycle-
regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridiza-
tion. Mol Biol Cell 9:3273–3297

17. Brown PO, Botstein D 1999 Exploring the new world of the genome with DNA
microarrays. Nat Genet 21:33–37

18. Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, Bennett HA, He
YD, Dai H, Walker WL, Hughes TR, Tyers M, Boone C, Friend SH 2000
Signaling and circuitry of multiple MAPK pathways revealed by a matrix of
global gene expression profiles. Science 287:873–880

19. Jelinsky SA, Estep P, Church GM, Samson LD 2000 Regulatory networks
revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells:
Rpn4 links base excision repair with proteasomes. Mol Cell Biol 20:8157–8167

20. Khan J, Simon R, Bittner M, Chen Y, Leighton SB, Pohida T, Smith PD, Jiang
Y, Gooden GC, Trent JM, Meltzer PS 1998 Gene expression profiling of

alveolar rhabdomyosarcoma with cDNA microarrays. Cancer Res 58:5009–
50013

21. Alizadeh A, Eisen M, Davis RE, Ma C, Sabet H, Tran T, Powell JI, Yang L,
Marti GE, Moore DT, Hudson Jr JR, Chan WC, Greiner T, Weisenburger D,
Armitage JO, Lossos I, Levy R, Botstein D, Brown PO, Staudt LM 1999 The
lymphochip: a specialized cDNA microarray for the genomic-scale analysis of
gene expression in normal and malignant lymphocytes. Cold Spring Harb
Symp Quant Biol 64:71–78

22. Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M,
Ladd C, Reich M, Latulippe E, Mesirov JP, Poggio T, Gerald W, Loda M,
Lander ES, Golub TR 2001 Multiclass cancer diagnosis using tumor gene
expression signatures. Proc Natl Acad Sci USA 98:15149–15154

23. Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R, Meltzer
P, Gusterson B, Esteller M, Kallioniemi OP, Wilfond B, Borg A, Trent J 2001
Gene-expression profiles in hereditary breast cancer. N Engl J Med 344:
539–548

24. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T,
Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown
PO, Botstein D, Eystein Lonning P, Borresen-Dale AL 2001 Gene expression
patterns of breast carcinomas distinguish tumor subclasses with clinical im-
plications. Proc Natl Acad Sci USA 98:10869–10874

25. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP,
Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES
1999 Molecular classification of cancer: class discovery and class prediction by
gene expression monitoring. Science 286:531–537

26. Scherf U, Ross DT, Waltham M, Smith LH, Lee JK, Tanabe L, Kohn KW,
Reinhold WC, Myers TG, Andrews DT, Scudiero DA, Eisen MB, Sausville
EA, Pommier Y, Botstein D, Brown PO, Weinstein JN 2000 A gene expression
database for the molecular pharmacology of cancer. Nat Genet 24:236–244

27. Kudoh K, Ramanna M, Ravatn R, Elkahloun AG, Bittner ML, Meltzer PS,
Trent JM, Dalton WS, Chin KV 2000 Monitoring the expression profiles of
doxorubicin-induced and doxorubicin-resistant cancer cells by cDNA microar-
ray. Cancer Res 60:4161–4166

28. Kihara C, Tsunoda T, Tanaka T, Yamana H, Furukawa Y, Ono K, Kitahara
O, Zembutsu H, Yanagawa R, Hirata K, Takagi T, Nakamura Y 2001 Pre-
diction of sensitivity of esophageal tumors to adjuvant chemotherapy by
cDNA microarray analysis of gene-expression profiles. Cancer Res 61:6474–
6479

29. Staunton JE, Slonim DK, Coller HA, Tamayo P, Angelo MJ, Park J, Scherf
U, Lee JK, Reinhold WO, Weinstein JN, Mesirov JP, Lander ES, Golub TR
2001 Chemosensitivity prediction by transcriptional profiling. Proc Natl Acad
Sci USA 98:10787–10792

30. Zembutsu H, Ohnishi Y, Tsunoda T, Furukawa Y, Katagiri T, Ueyama Y,
Tamaoki N, Nomura T, Kitahara O, Yanagawa R, Hirata K, Nakamura Y 2002
Genome-wide cDNA microarray screening to correlate gene expression pro-
files with sensitivity of 85 human cancer xenografts to anticancer drugs. Cancer
Res 62:518–527

31. van ’t Veer LJ, Dai H, van De Vijver MJ, He YD, Hart AA, Mao M, Peterse
HL, van Der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven
RM, Roberts C, Linsley PS, Bernards R, Friend SH 2002 Gene expression
profiling predicts clinical outcome of breast cancer. Nature 415:530–536

32. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, Gaasen-
beek M, Angelo M, Reich M, Pinkus GS, Ray TS, Koval MA, Last KW,
Norton A, Lister TA, Mesirov J, Neuberg DS, Lander ES, Aster JC, Golub TR
2002 Diffuse large B-cell lymphoma outcome prediction by gene-expression
profiling and supervised machine learning. Nat Med 8:68–74

33. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick
JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson
Jr J, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC,
Weisenburger DD, Armitage JO, Warnke R, Wilson W, Grever MR, Byrd JC,
Botstein D, Brown PO, Staudt LM 2000 Distinct types of diffuse large B-cell
lymphoma identified by gene expression profiling. Nature 403:503–511

34. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi
K, Pienta KJ, Rubin MA, Chinnaiyan AM 2001 Delineation of prognostic
biomarkers in prostate cancer. Nature 23:412:822–826

35. Iyer VR, Eisen MB, Ross DT, Schuler G, Moore T, Lee JC, Trent JM, Staudt
LM, Hudson Jr J, Boguski MS, Lashkari D, Shalon D, Botstein D, Brown PO
1999 The transcriptional program in the response of human fibroblasts to
serum. Science 283:83–87

36. Dietz AB, Bulur PA, Knutson GJ, Matasic R, Vuk-Pavlovic S 2000 Maturation
of human monocyte-derived dendritic cells studied by microarray hybridiza-
tion. Biochem Biophys Res Commun 275:731–738

37. Guo X, Liao K 2000 Analysis of gene expression profile during 3T3-L1 pre-
adipocyte differentiation. Gene 251:45–53

38. Dupont J, Khan J, Qu BH, Metzler P, Helman L, LeRoith D 2001 Insulin and
IGF-1 induce different patterns of gene expression in mouse fibroblast NIH-
3T3 cells: identification by cDNA microarray analysis. Endocrinology 142:
4969–4675

39. Funk WD, Wang CK, Shelton DN, Harley CB, Pagon GD, Hoeffler WK 2000
Telomerase expression restores dermal integrity to in vitro-aged fibroblasts in
a reconstituted skin model. Exp Cell Res 258:270–278

40. Lee HM, Greeley GH, Jr, Englander EW 2001 Age-associated changes in gene

1988 Endocrinology, June 2002, 143(6):1983–1989 Afshari • Perspective



expression patterns in the duodenum and colon of rats. Mech Ageing Dev
122:355–371

41. Lee C-K, Klopp RG, Weindruch R, Prolla TA 1999 Gene expression profile
of aging and its retardation by caloric restriction. Science 285:390–393

42. Shaheduzzaman S, Krishnan V, Petrovic A, Bittner M, Meltzer P, Trent J,
Venkatesan S, Zeichner S 2002 Effects of HIV-1 Nef on cellular gene expres-
sion profiles. J Biomed Sci 9:82–96

43. Kato-Maeda M, Gao Q, Small PM 2001 Microarray analysis of pathogens and
their interaction with hosts. Cell Microbiol 3:713–719

44. Wilson M, DeRisi J, Kristensen HH, Imboden P, Rane S, Brown PO,
Schoolnik GK 1999 Exploring drug-induced alterations in gene expression in
Mycobacterium tuberculosis by microarray hybridization. Proc Natl Acad Sci
USA 96:12833–12838

45. Afshari CA, Nuwaysir EF, Barrett JC 1999 Application of complementary
DNA microarray technology to carcinogen identification, toxicology, and drug
safety evaluation. Cancer Res 59:4759–4760

46. Ulrich R, Friend SH 2002 Toxicogenomics and drug discovery:will new tech-
nologies help us produce better drugs? Nature Rev Drug Disc 1:84–88

47. Lee ML, Kuo FC, Whitmore GA, Sklar J 2000 Importance of replication in
microarray gene expression studies: statistical methods and evidence from
repetitive cDNA hybridizations. Proc Natl Acad Sci USA 97:9834–9839

48. Pritchard CC, Hsu L, Delrow J, Nelson PS 2001 Project normal: defining
normal variance in mouse gene expression. Proc Natl Acad Sci USA 98:13266–
13271

49. Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, Bushel P,
Afshari C, Paules RS 2001 Assessing gene significance from cDNA microarray
expression data via mixed models. J Comput Biol 8:625–637

50. Churchill GA, Oliver B 2001 Sex, flies and microarrays. Nat Genet 29:355–356
51. Tennant RW 2002 EHP 110–1, 2002, Editorial: the national center for toxi-

cogenomics: using new technologies to inform mechanistic toxicology. Envi-
ron Health Perspect 110:A8–A10

51a.Lobenhofer EK, Bennett L, Cable PL, Li L, Bushel PR, Afshari CA, Regulation
of DNA replication fork genes by 17�-estradiol. Mol Endocrinol, in press

52. Chen D, Chen Y, Hu S 1997 A pattern classification procedure integrating the
multivariate statistical analysis with neural networks. Comput Chem
21:109–113

53. Kerr MK, Churchill GA 2001 Statistical design and the analysis of gene
expression microarray data. Genet Res 77:123–128

54. Chen Y, Yakhini Z, Ben-Dor A, Dougherty E, Trent JM, Bittner M 2001
Analysis of expression patterns: the scope of the problem, the problem of scope.
Dis Markers 17:59–65

55. Brazma A, Vilo J 2001 Gene expression data analysis. Microbes Infect
3:823–829

56. Bushel PR, Hamadeh H, Bennett L, Sieber S, Martin K, Nuwaysir EF, John-
son K, Reynolds K, Paules RS, Afshari CA 2001 MAPS: a microarray project
system for gene expression experiment information and data validation. Bioin-
formatics 17:564–565

57. Quackenbush J 2001 Computational analysis of microarray data. Nat Rev
Genet 2:418–427

58. Eisen MB, Spellman PT, Brown PO, Botstein D 1998 Cluster analysis and
display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:
14863–14868

59. Sherlock G 2001 Analysis of large-scale gene expression data. Brief Bioinform
2:350–362

60. Weindruch R, Kayo T, Lee CK, Prolla TA 2001 Microarray profiling of gene
expression in aging and its alteration by caloric restriction in mice. J Nutr
131:918S–923S

61. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack
JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams
C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D 2000
Molecular portraits of human breast tumours. Nature 406:747–752

62. Taylor E, Cogdell D, Coombes K, Hu L, Ramdas L, Tabor A, Hamilton S,
Zhang W 2001 Sequence verification as quality-control step for production of
cDNA microarrays. Biotechniques 31:62–65

63. Amundson SA, Bittner M, Chen Y, Trent J, Meltzer P, Fornace Jr AJ 1999
Fluorescent cDNA microarray hybridization reveals complexity and hetero-
geneity of cellular genotoxic stress responses. Oncogene 18:3666–13672

64. Walker NJ 2001 Real-time and quantitative PCR: applications to mechanism-
based toxicology. J Biochem Mol Toxicol 15:121–127

65. Taniguchi M, Miura K, Iwao H, Yamanaka S 2001 Quantitative assessment

of DNA microarrays—comparison with Northern blot analyses. Genomics
71:34–39

66. Hamadeh HK, Bushel P, Tucker CJ, Martin K, Paules R, Afshari CA 2002
Detection of diluted gene expression alterations using cDNA microarrays.
Biotechniques 32:322–329

67. Kononen J, Bubendorf L, Kallioniemi A, Barlund M, Schraml P, Leighton S,
Torhorst J, Mihatsch MJ, Sauter G, Kallioniemi OP 1998 Tissue microarrays
for high-throughput molecular profiling of tumor specimens. Nat Med
4:844–847

68. Khan J, Bittner ML, Chen Y, Meltzer PS, Trent JM 1999 DNA microarray
technology: the anticipated impact on the study of human disease. Biochim
Biophys Acta 1423:M17–M28

69. Phillips JL, Hayward SW, Wang Y, Vasselli J, Pavlovich C, Padilla-Nash H,
Pezullo JR, Ghadimi BM, Grossfeld GD, Rivera A, Linehan WM, Cunha GR,
Ried T 2001 The consequences of chromosomal aneuploidy on gene expression
profiles in a cell line model for prostate carcinogenesis. Cancer Res 61:8143–
8149

70. Sudbrak R, Wieczorek G, Nuber UA, Mann W, Kirchner R, Erdogan F,
Brown CJ, Wohrle D, Sterk P, Kalscheuer VM, Berger W, Lehrach H, Ropers
HH 2001 X chromosome-specific cDNA arrays: identification of genes that
escape from X-inactivation and other applications. Hum Mol Genet 10:77–83

71. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert
C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P,
Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A,
Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M 2001
Minimum information about a microarray experiment (MIAME)-toward stan-
dards for microarray data. Nat Genet 29:365–371

72. Ermolaeva O, Rastogi M, Pruitt KD, Schuler GD, Bittner ML, Chen Y, Simon
R, Meltzer P, Trent JM, Boguski MS 1998 Data management and analysis for
gene expression arrays. Nat Genet 20:19–23

73. Kellam P 2001 Microarray gene expression database: progress towards an
international repository of gene expression data. Genome Biol 2:4011

74. Sherlock G, Hernandez-Boussard T, Kasarskis A, Binkley G, Matese JC,
Dwight SS, Kaloper M, Weng S, Jin H, Ball CA, Eisen MB, Spellman PT,
Brown PO, Botstein D, Cherry JM 2001 The Stanford microarray database.
Nucleic Acids Res 29:152–155

75. Geschwind DH 2001 Sharing gene expression data: an array of options. Nat
Rev Neurosci 2:435–438

76. Gardiner-Garden M, Littlejohn TG 2001 A comparison of microarray data-
bases. Brief Bioinform 2:143–158

77. Edgar R, Domrachev M, Lash AE 2002 Gene expression omnibus: NCBI gene
expression and hybridization array data repository. Nucleic Acids Res 30:
207–210

78. Dwight SS, Harris MA, Dolinski K, Ball CA, Binkley G, Christie KR, Fisk
DG, Issel-Tarver L, Schroeder M, Sherlock G, Sethuraman A, Weng S,
Botstein D, Cherry JM 2002 Saccharomyces genome database (SGD) provides
secondary gene annotation using the gene ontology (GO). Nucleic Acids Res
30:69–72

79. Bono H, Kasukawa T, Hayashizaki Y, Okazaki Y 2002 READ: RIKEN ex-
pression array database. Nucleic Acids Res 30:211–213

80. Schulze-Kremer S 1998 Ontologies for molecular biology. Pac Symp Biocom-
put 695–706

81. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L,
Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM,
Sherlock G 2000 Gene ontology: tool for the unification of biology. The Gene
Ontology Consortium. Nat Genet 25:25–29

82. Karp PD 2000 An ontology for biological function based on molecular inter-
actions. Bioinformatics 16:269–285

83. Karp PD 2001 Pathway databases: a case study in computational symbolic
theories. Science 293:2040–2044

84. Masys DR, Welsh JB, Lynn Fink J, Gribskov M, Klacansky I, Corbeil J 2001
Use of keyword hierarchies to interpret gene expression patterns. Bioinfor-
matics 17:319–326

85. Bono H, Kasukawa T, Furuno M, Hayashizaki Y, Okazaki Y 2002 FANTOM
DB: database of functional annotation of RIKEN mouse cDNA clones. Nucleic
Acids Res 30:116–118

86. Kanehisa M, Goto S, Kawashima S, Nakaya A 2002 The KEGG databases at
GenomeNet. Nucleic Acids Res 30:42–46

Afshari • Perspective Endocrinology, June 2002, 143(6):1983–1989 1989


