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Parallel quantification of large numbers of messenger RNA transcripts using microarray technology promises to 
provide detailed insight into cellular processes involved in the regulation of gene expression. This should allow new
understanding of signalling networks that operate in the cell and of the molecular basis and classification of dis-
ease. But can the technology deliver such far-reaching promises?

The use of microarrays to analyse gene expression on a global
level has recently received a great deal of attention. There has
been much speculation about the power of this approach in

the analysis of disease and the unravelling of cellular signalling
pathways. As the finishing touches are put on the human genome
sequence and it becomes clear that it contains less than 40,000
genes, one might hope that we are advancing towards being able to
describe fully the regulation of gene-expression networks and how
they malfunction in disease. But does the reality live up to the hype?
In this review we describe the technology underpinning the
microarray revolution, and attempt to address the ways in which it
can be used and the type of solutions it can be expected to provide.
We also consider the pitfalls of the technology, whether it will pro-
vide new insights into cell biology, and how to avoid drowning in a
glut of uninterpretable data.

Upstream considerations: microarray technology
The principle of a microarray experiment, as opposed to the classi-
cal northern-blotting analysis, is that mRNA from a given cell line
or tissue is used to generate a labelled sample, sometimes termed
the ‘target’, which is hybridized in parallel to a large number of
DNA sequences, immobilized on a solid surface in an ordered
array1. Tens of thousands of transcript species can be detected and
quantified simultaneously. During recent years, DNA microarray
technology has been advancing rapidly. The development of more
powerful robots for arraying, new surface technology for glass
slides, and new labelling protocols and dyes, together with increas-
ing genome-sequence information for different organisms, includ-
ing humans, will enable us to extend the quality and complexity of
microarray experiments.
Array platforms. Although many different microarray systems have
been developed by academic groups and commercial suppliers, the
most commonly used systems today can be divided into two
groups, according to the arrayed material: complementary DNA
(cDNA) and oligonucleotide microarrays (Fig. 1). The arrayed
material has generally been termed the probe since it is equivalent
to the probe used in a northern blot analysis. Probes for cDNA
arrays are usually products of the polymerase chain reaction (PCR)
generated from cDNA libraries or clone collections, using either
vector-specific or gene-specific primers, and are printed onto glass
slides or nylon membranes as spots at defined locations. Spots are
typically 100–300 µm in size and are spaced about the same dis-
tance apart. Using this technique, arrays consisting of more than
30,000 cDNAs can be fitted onto the surface of a conventional
microscope slide. For oligonucleotide arrays, short 20–25mers are
synthesized in situ, either by photolithography onto silicon wafers
(high-density-oligonucleotide arrays from Affymetrix2, http://
www.affymetrix.com) or by ink-jet technology (developed by

Rosetta Inpharmatics, http://www.rii.com, and licensed to Agilent
Technologies). Alternatively, presynthesized oligonucleotides can
be printed onto glass slides. Methods based on synthetic oligonu-
cleotides offer the advantage that because sequence information
alone is sufficient to generate the DNA to be arrayed, no time-con-
suming handling of cDNA resources is required. Also, probes can
be designed to represent the most unique part of a given transcript,
making the detection of closely related genes or splice variants pos-
sible. Although short oligonucleotides may result in less specific
hybridization and reduced sensitivity, the arraying of presynthe-
sized longer oligonucleotides (50–100mers) has recently been
developed to counteract these disadvantages3. However, the high
cost of commercially available, in situ-synthesised oligonucleotide
arrays can make them inaccessible for academic laboratories, and
purchase of large numbers of long oligonucleotides also incurs sig-
nificant cost.

Spotted arrays allow a greater degree of flexibility in the choice
of arrayed elements, particularly for the preparation of smaller,
customized arrays for specific investigations. As a result, cDNA
gridded arrays have so far been the technique most frequently used
in academic labs (see http://cmgm.stanford.edu/pbrown/mguide/
index.html and http://www.nhgri.nih.gov/DIR/LCG/15K/HTML
for information about cDNA array technology). In addition, array-
ing of unsequenced clones from cDNA libraries can be useful for
gene discovery. However, with prices for oligonucleotide synthesis
falling all the time, spotted long-oligonucleotide arrays could be a
viable alternative for the future.
Target preparation. Another important difference between in situ-
synthesized, high-density oligonucleotide arrays (Affymetrix) and
spotted arrays lies in target preparation (Fig. 1). In both cases,
mRNA from cells or tissue is extracted, converted to DNA and
labelled, hybridized to the DNA elements on the array surface of
the array, and detected by phospho-imaging or fluorescence scan-
ning. The high reproducibility of in situ synthesis of oligonu-
cleotide chips allows accurate comparison of signals generated by
samples hybridized to separate arrays. In the case of spotted arrays,
the process of gridding is not accurate enough to allow comparison
between different arrays. The use of different fluorescent dyes (such
as Cy3 and Cy5) allows mRNAs from two different cell populations
or tissues to be labelled in different colours, mixed and hybridized
to the same array, which results in competitive binding of the tar-
get to the arrayed sequences. After hybridization and washing, the
slide is scanned using two different wavelengths, corresponding to
the dyes used, and the intensity of the same spot in both channels
is compared. This results in a measurement of the ratio of tran-
script levels for each gene represented on the array. To be able to
compare a large number of samples, the same reference RNA —
sometimes a mixture of all the samples of one experiment or a
commercially available standard — can be used.
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As array technology has advanced, more sensitive and quantita-
tive methods for target preparation have had to be developed. In
cases in which the quantity of RNA is not limited, incorporation
of nucleotides coupled to fluorescent dyes during synthesis of the
first strand of cDNA is the method of choice, as it provides the
most linear relationship between starting material and labelled
product. However, most protocols require between 25–100 µg
total RNA, which is often not readily available in studies using pri-
mary cells or tissues. Various procedures have been developed to

increase sensitivity and reduce the amount of RNA required. One
strategy is target amplification by in vitro transcription, whereby up
to 50 µg of labelled cRNA can be produced from 1 µg of mRNA. In
addition, several rounds of in vitro transcription can be combined
with cDNA synthesis to enhance the amplification even further4.
Using these protocols, it is even possible to profile the transcripts of
a single cell5. Another strategy is post-hybridization amplification
using labelled antibodies or molecules carrying large numbers of
fluorophors6. Several studies have used target-amplification tech-
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Figure 1 Schematic overview of probe array and target preparation for spotted
cDNA microarrays and high-density oligonucleotide microarrays. a, cDNA microar-
rays. Array preparation: inserts from cDNA collections or libraries (such as IMAGE
libraries) are amplified using either vector-specific or gene-specific primers. PCR
products are printed at specified sites on glass slides using high-precision arraying
robots. Through the use of chemical linkers, selective covalent attachment of the
coding strand to the glass surface can be achieved. Target preparation: RNA from
two different tissues or cell populations is used to synthesize single-stranded cDNA
in the presence of nucleotides labelled with two different fluorescent dyes (for exam-
ple, Cy3 and Cy5). Both samples are mixed in a small volume of hybridization buffer
and hybridized to the array surface, usually by stationary hybridization under a cover-
slip, resulting in competitive binding of differentially labelled cDNAs to the correspon-
ding array elements. High-resolution confocal fluorescence scanning of the array with
two different wavelengths corresponding to the dyes used provides relative signal

intensities and ratios of mRNA abundance for the genes represented on the array. 
b, High-density oligonucleotide microarrays. Array preparation: sequences of 16–20
short oligonucleotides (typically 25mers) are chosen from the mRNA reference
sequence of each gene, often representing the most unique part of the transcript in
the 5′-untranslated region. Light-directed, in situ oligonucleotide synthesis is used to
generate high-density probe arrays containing over 300,000 individual elements.
Target preparation: polyA+ RNA from different tissues or cell populations is used to
generate double-stranded cDNA carrying a transcriptional start site for T7 DNA poly-
merase. During in vitro transcription, biotin-labelled nucleotides are incorporated into
the synthesized cRNA molecules. Each target sample is hybridized to a separate
probe array and target binding is detected by staining with a fluorescent dye coupled
to streptavidin. Signal intensities of probe array element sets on different arrays are
used to calculate relative mRNA abundance for the genes represented on the array.
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niques to compare the expression profiles of defined cell popula-
tions extracted from tissue sections by laser-capture microdissec-
tion. However, suitable controls are required to ensure that ampli-
fication has not introduced significant experimental bias into the
target preparation7. This problem has been particularly evident in
the expression profiling of tumour samples. In the case of solid
tumours, obtaining pure populations of tumour cells for microar-
ray analysis would require microdissection. However, a recent
study8 using grossly dissected breast-cancer specimens has demon-
strated a way to circumvent the problem of sample heterogeneity.
Expression profiles from whole solid tumours can be compared to
profiles from potential untransformed infiltrating cell types, such
as lymphocytes or endothelial cells, to identify a subset of genes
with expression patterns that are specific to the tumour cells.
Subsequent data analysis and sample clustering can then be carried
out only on this ‘intrinsic gene subset’, which in the case of the
recent study was sufficient for tumour classification8.
Data analysis, reproducibility and validation. The data of a
microarray experiment typically constitute a long list of measure-
ments of spot intensities and intensity ratios, generated either by
pairwise comparison of two samples or by comparing several sam-
ples to a common control. The challenge is then to sieve through
this mound of data to find meaningful results. Replication has been
shown to reduce markedly the number of potential false positive
results, but may be difficult because of high cost or limitation of the
amount of sample. However, as the efficiency of incorporation of
nucleotides labelled with different fluorescent dyes during target-
sample preparation may not be equal, reciprocal labelling with
swapped colours is recommended. Our own experiences have led
us to analyse independent duplicate samples with reciprocal
labelling — using four microarrays as standard for each experi-
mental point. Several researchers have found that variability of
microarray results can be significant, especially for genes with low
expression levels, and replication is needed to establish a high
degree of confidence in the data (see also Mills et al., pp. 175–178,
this issue). Another problem arises from the fact that data about
genes that are found to be unchanged have to be treated with par-
ticular care. It is very possible that certain DNA elements on the
array simply fail to detect the right transcript species, as a result of
cross-hybridization or adverse secondary structure. Verification of
a subset of results by alternative techniques such as northern
hybridisation, RNase protection or PCR with reverse transcription
(RT-PCR), in particular ‘quantitative’ or ‘real-time’ RT-PCR9, can
help to establish an estimate of the variability of a given experi-
mental system. More experience in using microarray technology,
particularly concerning the choice of DNA sequences to be arrayed,
will improve confidence in the reliability of the data.

Because of the complexity of the data sets generated by microar-
ray experiments, the use of data-analysis software is essential.
Several data-analysis tools have been developed by 
commercial suppliers (such as GeneSpring from SiliconGenetics,
http://www.sigenetics.com/), and others are available from public
sources (see http://genome-www4.stanford.edu/MicroArray/SMD/
restech.html for an overview).

Downstream considerations: what can a cell biologist
learn using microarrays?
The use of microarrays to analyse gene expression is becoming
increasingly familiar, but what it can and cannot achieve is still the
subject of much debate. Microarrays can be used to investigate
problems in cell biology in various ways; the different experimen-
tal approaches fall between two extremes. At one end, the investi-
gator is interested only in finding the single change in gene
expression that might be the key to a given alteration in pheno-
type; in some ways this is equivalent to looking for a needle in a
haystack, and could be thought of as an entirely local approach to
analysis of gene-expression changes (Fig. 2). At the other extreme,

the aim is to look at overall patterns of gene expression in order to
understand the architecture of genetic regulatory networks, a glob-
al approach that could ultimately lead to complete description of
the transcription-control mechanisms in a cell.
Following individual pathways. So far, much of the interest of cell
biologists in microarrays has been directed towards identifying
individual genes, the regulated expression of which can explain
particular biological phenomena. However, it is probably fair to say
that this has not been the most successful use of microarrays to
date. The problem is that microarray experiments, whether based
on oligonucleotides or cDNA, are highly capable of generating long
lists of genes with altered expression, but they provide few clues as
to which of these changes are important in establishing a given phe-
notype — this deduction is left to the ingenuity of the experi-
menter. A given stimulus could potentially lead to changes in the
mRNA levels of hundreds of genes, particularly in mammalian sys-
tems. Faced with such a mass of data, the temptation is to look for
genes that conform to existing ideas about how the system might
work. The benefits of an unbiased approach will be lost if explo-
ration is limited to our current framework of understanding.

How can this problem be minimized? Careful experimental
design is critical, and several key issues should be considered. It is
important that the samples for comparison are as closely matched
as possible: a comparison of apples and oranges is unlikely to be the
best way to investigate the regulation of skin colouration! Although
this may seem obvious, it is very easy, when analysing growth-sig-
nalling pathways, for example, to end up comparing proliferating
and quiescent cells, in which the vast majority of differences in gene
expression are the consequences, rather than the causes, of the
induction of proliferation. These problems can be reduced by using
inducible systems — either by addition of extracellular factors or by
the use of inducible expression vectors — and looking at earlier
rather than later time points. In some cases it may be possible to
block secondary changes in gene expression (those that are depend-
ent on the initial changes in protein levels) using inhibitors of pro-
tein synthesis, although these can have significant effects in their
own right and should be treated with caution. The comparison of
cells constitutively expressing activated signalling proteins with
parental cells does not allow primary and secondary changes in gene
expression to be distinguished, and runs the risk of identifying clon-
al differences in expression that are not connected to the gene of
interest but are generated by selection of the engineered cell line.

Through the use of well-designed time courses and titrations, it
may be possible to reduce greatly the number of gene-expression
changes that could account for a given biological response. It is pos-
sible that a secondary functional screen may be available to narrow
this down further, but in most cases careful analysis of the pub-
lished literature will be required before direct experimental investi-
gation of gene function is undertaken. This can often take one into
entirely unfamiliar areas, requiring much time and patience and is
also complicated by the lack of unified gene ontology. The use of
advanced sophisticated literature-searching tools, such as
Medminer (http://discover.nci.nih.gov/textmining/filters.html) 
or high-density array-pattern interpreter (HAPI, http://
array.ucsd.edu/hapi), which correlates gene accession numbers
with MeSH (medical subject heading) keywords, can be very useful
for known genes. Functional annotation of new sequences and
expressed sequence tags remains a challenge, but is crucial for the
interpretation of genome-wide expression data. For further
resources, see Mills et al. on pages 175–178 of this issue.

Once a set of genes has been identified as candidates for explain-
ing the phenotype of interest, their function has to be modulated in
such a way as to directly determine their degree of involvement. To
validate the involvement of the identified gene products in the
studied phenotype, functions of genes on the shortlist need to be
modulated artificially to see whether the generation of the biologi-
cal end point can be influenced. Several technical and conceptual
problems can arise here. One is that in mammalian systems it is
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currently very difficult to modulate gene expression or protein
function on a broad scale. By using conventional techniques of
molecular and cellular biology, such as dominant negative or active
mutants, antisense or knockout technology, a researcher may be
able to influence the activity of a handful of gene products, but not
dozens or hundreds. However, to modulate the activity of scores of
mammalian genes in a reasonable time frame is beyond the current
ability of most laboratories. Future technical advances may
improve this, perhaps following the situation in lower eukaryotic
model systems where the advent of RNA interference and the estab-
lishment of systematic gene knockouts has revolutionized the ease
of large-scale gene function.

Even if the functions of relatively large numbers of mammalian
gene products, can be modulated by the experimenter, there is still
the problem that such manipulation may affect signalling networks
in unexpected ways. For example, the concern that some proteins
may provide permissive functions, such that ablation of their activ-
ities leads to failure of a signalling pathways even when the proteins
in question are not directly involved. Another problem is that func-
tional redundancy could mean that two related gene products have
overlapping functions and would therefore both need to be ablated
to block a signalling pathway. Furthermore, in complex pathways,

activation of a single gene may itself be insufficient to induce a phe-
notype, even if that component is a necessary part of the pathway.
Although gene ablation or activation can be effective in character-
ising simple linear pathways, in reality many signalling systems are
part of combinatorial networks that might not be so amenable to
this kind of analysis.

One final problems that limits the usefulness of microarrays in
the analysis of individual pathways is the fact that regulation of
mRNA levels is only one aspect of biological control. Protein levels
are also controlled at several post-transcriptional steps, and protein
activity is controlled by post-translational modification.
Ultimately, the global study of cellular proteins by proteomics may
be able to provide the complete picture, although the fundamental
differences in nucleic acid and protein chemistry indicate that pro-
teomics will always be considerably more labour-intensive than the
study of gene transcription. It should be noted, however, that analy-
sis of gene-expression patterns is no less powerful a concept than
proteomics when it comes to identification of the characteristics of
signalling pathways or disease states.
Analysing gene-expression networks. The true power of microar-
rays in analysing cell function has been more obvious when used
to provide global pictures of expression patterns, rather than to
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Figure 2 Different approaches towards microarray experiments in cell biology. For
a local approach, results from a microarray experiment can be used to identify a
shortlist of genes that could be modulated in response to a given stimulus, condi-
tion or experimental manipulation. The causal involvement of modulation of gene
expression in the establishment of a given phenotype, such as transformation or
protection from apoptosis, must be established individually. In the global approach,

expression profiles from many different conditions, stimuli or phenotypes are com-
pared. By using cluster-analysis tools it is possible to identify co-regulated genes,
genes with related functions, and signatures of individual signalling pathways within
the data set. Different samples can be grouped according to their expression pro-
files, which are used for molecular classification of cancer types.
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identify a single critical gene (see Fig. 2). Large-scale analyses of
changes in gene expression during the yeast and mammalian cell
cycles10–12 or in response to stimulation of fibroblasts with serum or
platelet-derived growth factor13,14 have been undertaken to identify
genes with similar expression patterns. To achieve this, sophisticat-
ed software tools that identify common patterns of expression have
had to be developed. Genes with similar patterns are clustered, and
phylogenetic trees of related clusters can be drawn. During the past
two years several new strategies for cluster analysis of microarray
data have been described (reviewed in refs 15, 16). Several software
tools for cluster analysis have been developed and are available from
public sources (such as GeneCluster from Whitehead/MIT Center
for Genome Research, http://www.genome.wi.mit.edu/MPR/;
Expression Profiler from European Bioinformatics Institute,
http://expsrv.ebi.ac.uk/; and Cluster from Lawrence Berkeley
National Laboratory, http://rana.lbl.gov/EisenSoftware.htm).

In general, one can discriminate between unsupervised meth-
ods, such as k-means clustering, principal-component analysis and
self-organizing maps17,18, and supervised methods, in which a sub-
set of the data is used to train the system to discriminate within the
remaining set19. Such studies are based on the assumption that
genes with closely related expression patterns may be controlled by
the same regulatory mechanisms. Great advances have been made
in yeast, in which it has been possible to identify common DNA
motifs in the promoter regions of co-ordinately regulated
genes10,12,20,21. This can lead to the identification of new transcrip-
tion factors that are implicated in the transcription of a co-regulat-
ed set of genes. Groups of co-ordinately regulated genes (so-called
‘synexpression groups’) have been identified in higher eukaryotes22,
but as the organization of regulatory elements is far more complex
than in yeast, the usefulness of using such pattern-recognition
methods tools to identify common motifs in mammalian promot-
ers remains unclear. However, detailed analysis of binding sites for
known transcription factors within the promoters of co-regulated
genes can already be useful in understanding the coupling of sig-
nalling processes with gene expression within the cell. The aim is to
identify similar patterns or combinations of binding sites for dif-
ferent transcription factors on the promoters of co-regulated genes,
but this requires a more comprehensive knowledge of transcrip-
tion-factor binding sites and promoter structures. A recent techni-
cal development that could help to identify genes that are regulat-
ed by particular transcription factors involves using chromatin
immunoprecipitation to generate target sample DNA for a
microarray containing all yeast intergenic regions. This allows the
identification of all sites within the genome at which specific tran-
scription factors bind23,24. Overall, these approaches may eventually
lead to the generation of accurate and comprehensive maps of tran-
scription-control mechanisms.

Apart from conclusions about common mechanisms of tran-
scriptional control, identification of co-regulated genes may also
be used to assign potential functions to new genes. Although
ambiguous, the idea behind this strategy is that genes with simi-
lar expression patterns in many different growth conditions are
functionally related (‘guilt by association’). A good example of
the power of combining many data sets has been provided
recently by Hughes et al.25. They placed hundreds of data sets,
representing the gene-expression profiles of yeast in response to
various drugs or mutations of known genes, into a compendium
database. They then compared the expression profiles of cells
with mutations in genes of unknown function with the com-
pendium; in many cases the function of the gene of interest could
be predicted with considerable accuracy by matching its profile
to those corresponding to known mutants in the compendium.
This method could also be used to determine the gene products
or pathways that are targeted by a drug of unknown function,
possibly providing valuable short-cuts to the characterization of
new drugs. Deletion of the gene that encodes the desired target of
the drug should prevent all the changes in expression caused by

the drug, leaving only “off-target” side-effects resulting from
unwanted interactions with other proteins26.

It is to be hoped that analysis of these huge quantities of data
will ultimately yield fundamental insights into the wiring of the
cell. Many large microarray data sets — cataloguing changes in
gene expression in response to mitogens, drug treatments, activa-
tion of specific pathways, and so on — have been placed in the pub-
lic domain. In part, the logic behind this has been the hope that
others will be able to make more sense of the expression patterns
than the original investigators, particularly by comparing several
data sets. This obviously requires a degree of standardization of
databases, which is being addressed but has yet to be fully
achieved27 (see http://www.ebi.ac.uk/arrayexpress and http://
www.ncbi.nlm.nih.gov/geo). For maximum comparability of data
sets, standards may also need to be agreed for experimental proto-
cols across the entire community.

As well as aiding the understanding of networks that regulate
gene transcription, the use of microarray technology is also con-
tributing directly to the annotation of the human genome
sequence. The best example of this has been the use of the draft
human genome sequence to design long oligonucleotides that cor-
respond to predicted exons28. These were used on a genome-wide
scale on microarrays to investigate whether the exons predicted by
gene-finding programs are actually expressed. It seems likely that
further work of this type will be required for all of the genes in the
human genome to be identified. The consideration of gene expres-
sion at the level of individual exons will also be important in under-
standing the extent to which alternative splicing occurs in the
human genome.
Cancer and other diseases. Microarrays hold much promise for the
analysis of diseases, and their use has been especially intensive in
the case of cancer. The identification of single gene products that
are expressed in tumour cells but not in normal tissue is of great
pharmacological interest, particularly in the establishment of
tumour markers for diagnostic purposes. In addition, proteins that
are expressed on the surface of tumour cells can be used to design
targeting strategies for chemo- or immunotherapy. Transcriptional
profiling of solid tumours is complicated by the fact that they may
contain variable amounts of infiltrating tissue, such as stroma,
endothelial or lymphoid cells. Isolation of purified tumour cells by
laser-capture microdissection results in extremely low RNA yields,
which require substantial target amplification and can introduce
significant bias into the results. A recent technical advance, which
should prove to be useful in verifying potential tumour markers
identified using whole solid tumours, is the development of tissue
microarrays. Small sections from many different tumours are com-
bined in a paraffin block, sectioned and applied to microscope
slides. Using this technique, up to 1,000 tumour specimens can be
stained in parallel for immunohistochemistry or fluorescence in
situ hybridization29 to correlate gene expression with chromosomal
rearrangements.

Apart from identification of tumour markers, microarray analy-
sis can distinguish between clinically distinct subtypes of
leukemia30, lymphoma31, breast cancer8 and melanoma32. Gene-
expression profiles have also been used to discriminate between
normal and colon-tumour-derived tissue33. Microarrays have also
been used extensively on tumour-derived cell lines and to classify the
NCI-60 cancer cell-line panels34,35 according to their tumour origin.
The effects of more than 70,000 chemical compounds on these cell
lines have been correlated with alterations in their gene-expression
profiles35 in an attempt to identify genes that are involved in drug
sensitivity or resistance. Although these studies have offered new
prospects for refined tumour diagnosis and treatment by identifying
different subtypes of tumours that can be targetted with tailored
therapies, the real question is whether microarray analysis can also
help us to understand tumour biology. By comparing the expression
profiles of tumour samples using many genes, it is possible to identi-
fy those genes whose expression characterizes a particular tumour
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type, providing a signature of tumour gene expression. It will also be
interesting to compare the expression signature of a particular
tumour type to a compendium of data generated in vitro by meas-
uring the responses of closely related cell lines in culture to many
different stimuli, such as hormones, growth factors, or targeted acti-
vation of signalling intermediates36. Using this strategy, it should be
possible to draw conclusions about which signalling pathways are
activated in a particular tumour type, leading to the identification of
pathways that might provide therapeutic targets. One example of
this approach was the identification of the signalling pathways
involved in the metastatic potential of melanoma cells37.

Finally, gene-expression data can be combined with analysis of
genomic alterations, for example by microarray analysis of com-
parative genomic hybridization, whereby genomic DNA is
hybridized to immobilized bacterial artificial chromosome (BAC)
or cDNA clones38, to identify gene amplifications or deletions that
are involved in tumour development. In addition to the analysis of
cancer, microarrays have been used to analyse changes in gene
expression in several other diseases, including muscular dystro-
phy39, Alzheimer’s disease40, schizophrenia41 and HIV infection42.

Conclusions
The use of microarrays to explore gene expression on a global level
is a rapidly evolving technology that seems set to become more
powerful with the completion of the sequencing of the human
genome. The biochemistry of the microarrays is proving very use-
ful, and it seems likely that the significant advances in the next few
years will come in the interpretation of the data sets generated. At
present, it seems that we may only be scratching the surface when it
comes to extracting useful information from these large quantities
of data. This will be improved by advances in bioinformatics, but
will also require more thoughtful experimental design. Whether or
not microarray analysis is hypothesis-driven is open to debate, but
if it is to fulfil its true potential it needs to progress beyond mere
‘fishing expeditions’. Recent work in the field indicates that this is
already beginning to occur, and that microarray technology is set to
contribute much to the post-genomic future of biology.
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